Gastroenterology climate action opportunities via education, empowerment of trainees and research

Aasma Shaukat,1 Brijen Shah,2 Cassandra DL Fritz,3 M Bishr Omary 4

Climate change poses significant threats to our planet’s ecosystems, public health and current and future well-being.1 Several professional gastroenterology society guidelines and position statements highlight the importance of education and research in mitigating the detrimental consequences of the climate crisis on digestive health.2–4 In addition, trainees and early career gastroenterologists, being the future of our specialty, are in unique and important positions to make a positive and lasting impact on sustainability efforts related to climate change, and the health of our patients, communities and planet. We highlight in this commentary relevant opportunities related to education, empowerment of trainees and the multitude of research areas to support and pursue. This is the final of a nine-commentary series published by Gut that provides a primer on climate change and gastrointestinal (GI) health.5

EDUCATION BENEFICIARIES AND IMPLEMENTATION OF EDUCATIONAL EFFORTS

The clear recipients of a broad-based educational effort are the patients, trainees and gastroenterology providers (gastroenterologists, GI nurses) (figure 1). In terms of patient education, there are several resources that are already being provided by GI societies to their members, but these are disease-specific or general GI health resources. Such existing resources could easily be expanded to build on a wide range of available resources on ‘climate and health patient education’ that are catalogued by Healthcare Without Harm6 and the Medical Society Consortium on Climate & Health,7 including the impact of global warming on our food supply and the relationship of air quality to health.

Education to GI fellows and GI nurses can be provided by their respective professional organisations, for example, in the form of society symposia sponsored by their trainee committee or the creation of curricular materials for use locally. Currently, the accrediting body of graduate medical education in the USA, Accreditation Council for Graduate Medical Education and the American Board of Internal Medicine, have no requirements of teaching climate change outside of the normal teaching of environmental toxin exposure as relates to the pathophysiology and management of such exposure. Notably, several institutions are integrating the topic of climate and health into resident education,8 9 which can be extended into adult and paediatric GI fellowship training. The tide could quickly change should accreditation bodies make this a requirement.

Education for GI providers can take place via multiple venues presented by GI societies, and publications that can provide specific guidelines or best practice approaches. For example, many GI providers are not sure what are the best climate-friendly approaches they can undertake in their endoscopy practice, but guidance with specific approaches and recommended tools are becoming available.10 11 Health systems and hospital accreditation bodies can also play critical roles in providing guidance and expectations. For health systems, we envisage that this will become widespread in the next

Figure 1 Climate change-related education beneficiaries and facilitators of the educational implementation efforts, with advocacy playing a critical supportive role. Advocacy by providers, trainees and patients would be directed to policy-makers and government bodies, and potentially the public. The three beneficiaries of education are patients, trainees and providers. The facilitators of the educational implementation efforts are listed in the outer circle. Regulatory agencies include accreditation and governmental bodies. Climate foundations include non-profit organisations such as Healthcare Without Harm, Practice Greenhealth and My Green Doctor. Although the figure focuses on GI societies, the paradigm shown in this figure may be applied to other medical specialties and subspecialties. GI, gastrointestinal.

1Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
2Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
3Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
4Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, New Jersey, USA

Correspondence to M Bishr Omary; bo163@cabm.rutgers.eduAasma Shaukat; Aasma.Shaukat@nyulangone.org
few years as naming and empowering of sustainability officers in health systems continues to grow.12

EMPOWERMENT OF TRAINEES
Although education is intimately linked with trainees, we specifically highlight the empowerment of trainees and early career gastroenterologists because they are motivated and recognise that their generation have the most at stake. Several GI societies have within their committee structure a ‘Trainee and Early Career Committee’. This committee can play a critical role in guiding their GI society to pay close attention to sustainability efforts and to impact the other traditional committees that pertain to clinical practice, education, research, industry collaborations and advocacy by taking active measures related to sustainability efforts and implementing specific strategic goals that have been approved4 but not actively pursued. Predictably, success is likely within reach. For example, empowering medical students is already taking place in Canada, and the integration of planetary health education into the curriculum has been driven in large part by the students,13 14 an approach that can be equally successful in fellowship programmes driven by GI fellows and in GI practices driven by early career gastroenterologists. This can be coupled with educating the educators (in this case fellowship programme directors, division chiefs and accreditation bodies), which is similarly important. Examples of efforts that may be driven by trainees and early career gastroenterologists are summarised in online supplemental table 1. Furthermore, trainees, providers and their patients, coupled with entities they interface with (eg, GI societies, health systems, regulatory agencies), can collectively also play a critical role in shaping policy and helping create resources via advocacy (figure 1).

RESEARCH AREAS
The research areas involving GI health and disease perspectives cover the entire translational research spectrum of basic biomedical; translation to humans; and translation to patients, practices and communities. This is predicated on intervening to disrupt the vicious feed-forward cycle of climate change that negatively impacts human health which, in turn, increases the demand and utilisation of healthcare systems and consequently worsens the detrimental effects of climate change.15 The research areas that are in immediate need for discovery and innovation and ripe for the picking are displayed in figure 2 (outer serrated circle, although this list can be readily expanded). These research areas are enabled by several technologies that, in turn, are also wide-open additional research opportunities, including robotics and sensors (mobile health), artificial intelligence, nanotechnology, informatics and manipulation of the microbiome. Examples of research opportunities include elucidating evidence-based approaches to limit the environmental impact of endoscopy, particularly as related to reduce/reuse/recycle programmes given the resource-intensive nature of endoscopy.10 For this, working with industry partners is clearly needed.10 Studies pertaining to clinical practice outcomes from disease prevention, access to care (eg, telehealth, use of sensors, drones) and cost-effectiveness be it GI, liver and pancreas disorders are needed. In addition, further understanding of the impact of climate change on GI infections, given what appears to be differences in bacterial and viral infections16 is warranted. The importance of stress and the gut–brain axis in precipitating or exacerbating GI (and non-GI) disorders cannot be overstated.15 In addition, there is a major knowledge gap in our understanding of the health hazards of microplastics and nanoplastics that we ingest from food and beverages.18 Indeed, microplastics can be readily detected in human stool,19 and humans may ingest 0.1–5 g of microplastics weekly through several sources.20 Normal intestine, or impaired intestinal barrier in patients with inflammatory bowel disease, may experience uptake and retention of microplastics from stool as noted by their detection in liver tissue of patients with cirrhosis.21

FUNDING OPPORTUNITIES
Research support requires funding that may be sought from local (eg, health system, medical school, university), state or national government, foundations (digestive and non-digestive health focused), industry or philanthropy sources. Several potential funding sources are summarised in online supplemental table 2. For the
listed digestive health GI societies, there are no directed funding opportunities that are specific to a climate change related project. This is an important area that industry can support in their specific disease areas or intervention category such as endoscopy by supporting GI society grants, as many of them do, for specific GI diseases.

Most of the GI society grants are not earmarked to specific subject areas, and currently none are climate change focused grants. However, climate change grants, like any other investigator-initiated grant, will be reviewed competitively, so it is an excellent opportunity for trainees to consider if they are interested in research training and a climate change topic related to GI health. Similarly, the National Institutes of Health has several career development investigator-initiated funding opportunities to support such research efforts. Potential projects may also be proposed by GI practices (ie, not necessarily based in an academic setting per se) to funding agencies for projects such as developing or testing ‘green endoscopy’ or ‘green practice’ approaches. For such projects, it may be helpful to include in the grant proposal an academic investigator with content expertise or access to research infrastructure that may not be available in a GI practice setting. Another funding source is philanthropy from which giving to climate change mitigation efforts has increased 25% (between 2020 and 2021), which is three times faster than overall philanthropic giving.22

SUMMARY

Several of the elements highlighted here, as do the remaining commentary series articles,5 apply not only to sustainability of GI-centric mitigation of climate change detrimental effects, but also to efforts that may be undertaken by other medical specialties and subspecialties. There are numerous opportunities in gastroenterology climate action to be an educator, trainer, researcher, advocate or any combination of the four. The laboratory, where we can carry out our research projects and testing of hypotheses to advance discovery and innovation in climate change mitigation and sustainability efforts, can be the hospital, clinic, endoscopy unit, ‘wet’ or ‘dry’ research laboratory we work at, or a community location we serve. As US past president Barack Obama highlighted in his 2016 State of the Union address ‘We are the first generation to feel the impact of climate change and the last to be able to do anything about it’. The opportunities to make an impactful advance to planetary health are boundless and need to be pursued and addressed urgently.

Acknowledgements We thank Dr. Sherry Huang for input related to training and Dr. Natalie Bruniers (both at Rutgers University) for assistance with figure preparation.

Contributors AS and MBO wrote the initial draft of the manuscript, with edits and finalisation by all four authors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/gutjnl-2023-331093).

Received 12 September 2023
Accepted 13 September 2023
Published Online First 16 November 2023

Gut 2023;72:2219–2221. doi:10.1136/gutjnl-2023-331093

ORCID iD
M Bishr Omary http://orcid.org/0000-0002-8624-2347

REFERENCES

6 Climate and health patient education, Available: https://nohealth-uscanada.org/content/us-canada/climate-and-health-patient-education

7 The Medical Society Consortium on Climate & Health. For your Patients’ Information, Available: https://medsocietyclimatehealth.org/clinicians/patients/

Supplemental Table 1. Practical approaches trainees and early-career GIs can promote and make changes towards sustainability at the society, program, or individual levels.

<table>
<thead>
<tr>
<th>Professional Society</th>
<th>Division and Program Level</th>
<th>Individual Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment in digital learning platforms</td>
<td>For patients with patient portal access, no need to print endoscopy reports</td>
<td>Faculty: Integrate strategies for waste reduction into endoscopy training</td>
</tr>
<tr>
<td>Reduce the use of paper and plastic covers in journals</td>
<td>Push towards a paperless endoscopy and clinic units</td>
<td>Challenge each lecturer to provide a sustainability idea or pointer during each didactic lecture or case review</td>
</tr>
<tr>
<td>Advocate for healthcare delivery strategies that decrease the carbon footprint</td>
<td>Training programs to invest in iPads with capabilities to “run the list” electronically to reduce multiple team members printing a list every day</td>
<td>Fellows: Propose and initiate quality improvement projects in their clinics and endoscopy units, centered around measuring and reducing waste</td>
</tr>
<tr>
<td>Advocate for and work with device manufacturers towards carbon neutral practices</td>
<td>Leverage Early Career GIs and Trainees knowledge of digital platforms to catalogue educational materials</td>
<td>Join GI society committees working to develop strategies to mitigate the impact of climate change on planetary health</td>
</tr>
<tr>
<td>Support investigators to assess the impact of climate on GI health and its variable impact across populations</td>
<td>Teach TH skills</td>
<td></td>
</tr>
<tr>
<td>Consider more climate friendly ways to engage in professional society activities (virtual meetings, less paper based enduring material, waste friendly swag)</td>
<td>Educate fellows on which clinical scenarios are appropriate to use TH as initial and follow-up modalities</td>
<td></td>
</tr>
<tr>
<td>Advocate for, and support, research efforts</td>
<td>Use digital formats to share post visit information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start a Green Team to share the carbon impact of common tasks performed in GI</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: TH, telehealth
Supplemental Table 2: A listing of potential funding opportunities. Many of the listed funding agencies and GI societies are based in the United States.

<table>
<thead>
<tr>
<th>Funding agency</th>
<th>Link/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental protection agency (EPA)</td>
<td>Human Health and Climate Change Research</td>
</tr>
<tr>
<td>Wellcome</td>
<td>Find a funding opportunity</td>
</tr>
<tr>
<td>National Institutes of Health (NIH) (^A)</td>
<td>Climate Change and Health</td>
</tr>
<tr>
<td>National Science Foundation (NSF)</td>
<td>Global Centers (GC)</td>
</tr>
<tr>
<td>Advanced Research Projects Agency for Health (ARPA-H)</td>
<td>ARPA-H Home</td>
</tr>
<tr>
<td>American Cancer Society</td>
<td>Research Grant Process</td>
</tr>
<tr>
<td>American Gastroenterological Association (AGA)</td>
<td>Apply for Awards - American Gastroenterological Association</td>
</tr>
<tr>
<td>American Association for the Study of Liver Diseases (AASLD)</td>
<td>Funding Opportunities</td>
</tr>
<tr>
<td>American Society for Gastrointestinal Endoscopy (ASGE)</td>
<td>ASGE</td>
</tr>
<tr>
<td>American College of Gastroenterology (ACG)</td>
<td>ACG Institute Research Grants & Awards</td>
</tr>
<tr>
<td>North American Society for Pediatric Gastroenterology, Hepatology & Nutrition</td>
<td>Funding Opportunities (naspghan.org)</td>
</tr>
<tr>
<td>American Liver Foundation</td>
<td>Research Awards Program - American Liver Foundation</td>
</tr>
<tr>
<td>Canadian Association of Gastroenterology (CAG)</td>
<td>Funding Opportunities (cag-acg.org)</td>
</tr>
<tr>
<td>British Society of Gastroenterology (BSG)</td>
<td>Awards, Bursaries and Grants - The British Society of Gastroenterology (bsg.org.uk)</td>
</tr>
<tr>
<td>European Association for the Study of the Liver</td>
<td>EASL Registry Grants - EASL-The Home of Hepatology</td>
</tr>
</tbody>
</table>