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ABSTRACT
Objective Gestational diabetes mellitus (GDM) is 
a condition in which women without diabetes are 
diagnosed with glucose intolerance during pregnancy, 
typically in the second or third trimester. Early diagnosis, 
along with a better understanding of its pathophysiology 
during the first trimester of pregnancy, may be effective 
in reducing incidence and associated short- term and 
long- term morbidities.
Design We comprehensively profiled the gut 
microbiome, metabolome, inflammatory cytokines, 
nutrition and clinical records of 394 women during the 
first trimester of pregnancy, before GDM diagnosis. We 
then built a model that can predict GDM onset weeks 
before it is typically diagnosed. Further, we demonstrated 
the role of the microbiome in disease using faecal 
microbiota transplant (FMT) of first trimester samples 
from pregnant women across three unique cohorts.
Results We found elevated levels of proinflammatory 
cytokines in women who later developed GDM, 
decreased faecal short- chain fatty acids and altered 
microbiome. We next confirmed that differences in 
GDM- associated microbial composition during the first 
trimester drove inflammation and insulin resistance 
more than 10 weeks prior to GDM diagnosis using FMT 
experiments. Following these observations, we used 
a machine learning approach to predict GDM based 
on first trimester clinical, microbial and inflammatory 
markers with high accuracy.
Conclusion GDM onset can be identified in the first 
trimester of pregnancy, earlier than currently accepted. 
Furthermore, the gut microbiome appears to play a 
role in inflammation- induced GDM pathogenesis, with 
interleukin- 6 as a potential contributor to pathogenesis. 
Potential GDM markers, including microbiota, can 
serve as targets for early diagnostics and therapeutic 
intervention leading to prevention.

INTRODUCTION
Gestational diabetes mellitus (GDM), or devel-
opment of glucose intolerance during pregnancy 

in women without diabetes, occurs when the 
pancreas cannot produce enough insulin to 
balance insulin- inhibiting effects of placental 
hormones (viz. oestrogen, cortisol and human 
placental lactogen).1 Approximately 10% of 
pregnant women worldwide are diagnosed with 
GDM. Risk factors include non- white ethnicity, 
increased maternal age, obesity, family history 
of diabetes and history of giving birth to large 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The incidence of gestational diabetes mellitus 
(GDM) is increasing worldwide.

 ⇒ Early prediction of GDM may reduce short- term 
and long- term complications to the mother and 
the offspring.

 ⇒ At later stages of pregnancy, the gut 
microbiome of women diagnosed with GDM 
is different from the microbiome of women 
without GDM.

 ⇒ Insulin resistance has been associated with 
elevated secretion of proinflammatory 
cytokines.

WHAT THIS STUDY ADDS
 ⇒ Gut microbiome, metabolome and inflammatory 
markers were profiled during the first trimester 
of pregnancy in 394 women.

 ⇒ Significant differences were found in these 
markers between women who would and 
would not later develop GDM.

 ⇒ The GDM phenotype was transferred to 
germ- free mice following faecal microbiota 
transplant from women in their first trimester of 
pregnancy.

 ⇒ Accurate prediction of GDM development was 
made based on first trimester biomarker profiles 
and clinical data.

 ⇒ This study suggests diagnosis of GDM/GDM 
risk can be made earlier allowing for earlier 
management or even complete prevention.
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infants. Consequences of GDM include a wide range of 
obstetrical and metabolic complications for both the mother 
(eg, pre- eclampsia, type 2 diabetes and cardiovascular 
diseases) and the neonate (mainly macrosomia and hypo-
glycaemia).2 Many complications are preventable if GDM 
is detected and appropriately managed and good glycaemic 
control is achieved by nutrition, exercise and insulin admin-
istration, if necessary, along with heightened monitoring 
during labour and delivery,3 but earlier detection might 
allow for complete amelioration of GDM- associated short- 
term and long- term risks.

The incidence of GDM is increasing worldwide, due 
primarily to the increase in prevalence of overweight and 
obesity, advanced maternal age and growth of at- risk popu-
lations.4–6 As such, it is important to expand early- prediction 
efforts towards reducing its negative consequences. To date, 
few studies have examined biomarkers of GDM in the first 
trimester (T1).7 8 Additionally, while gut microbial dysbiosis 
has been associated with diabetes,9 and a recent study has 
associated gut dysbiosis with GDM in the third trimester 
(T3),10 few have focused on T1.8 11–15

We sought to identify biomarkers of GDM in T1 of preg-
nancy. First, we comprehensively profiled the T1 gut micro-
biome, metabolome and inflammatory cytokine profiles of 
women who would and would not later be diagnosed with 
GDM. We then investigated whether the early pregnancy 
microbiome drove GDM development using germ- free (GF) 
mice. Finally, we used a machine learning approach to predict 
GDM based on patient characteristics, T1 microbiome and 
clinical information, to identify earlier time frames for ther-
apeutic intervention.

METHODS
Pregnant women
Primary prospective cohort
We enrolled a prospective cohort followed throughout preg-
nancy (online supplemental figure 1). Upon screening for GDM 
in the second trimester (T2; screening method described in 
online supplemental methods), women were retroactively clas-
sified as ‘would go on to develop GDM’ and ‘would not go on 
to develop GDM’. This main prospective cohort included 394 
pregnant women aged 18–40 years recruited between gestational 
ages (weeks+days) 11+0–13+6 at women’s health centres 
of Clalit HMO (Dan Petach Tikva District, Israel) during the 
years 2016–2017. Exclusion criteria included: type 1 or type 2 
diabetes mellitus diagnosed before pregnancy (all other chronic 
diseases were documented in the database); in vitro fertilisation 
or hormonal therapy in the previous 3 months; use of antibi-
otics in the previous 3 months and multiple gestation. Initially, 
400 women were recruited, but 4 did not provide any samples 
and 2 did not meet study criteria upon further examination 

of medical records (one with antibiotics use, one with type 2 
diabetes; online supplemental figure 1). Thus, 394 women were 
followed through 27–31 weeks of pregnancy; in this study, no 
women were lost to follow- up as following initial recruitment, 
all other data (namely GDM diagnosis) could be obtained from 
digital medical records. Weight and height were assessed at the 
time of recruitment and blood and faecal samples collected 
(see online supplemental methods). Dietary consumption (24- 
hour recall), physical activity (24- hour recall), sleeping hours 
(3- day recall), stress (validated questionnaire16), employment 
and education details (at recruitment) were recorded. Other 
maternal demographics, clinical and obstetrical data including 
pregnancy follow- up and comorbidities were extracted from 
medical records.

Secondary cohort
Since GDM incidence in Israel is about 10%,17 a secondary 
cohort of pregnant women was also recruited. Patients with 
GDM were enrolled in a cohort study at 24–28 gestational 
weeks at Rabin Medical Center between the years 2016 and 
2017. Exclusion criteria for this cohort were the same as for the 
main cohort. Medical chart review was performed to identify 
all demographic and clinical characteristics from T1. Clinical 
data, but not biological samples, from this secondary cohort are 
included in the study.

Additional cohorts
In addition to the above cohorts, for faecal microbiome 
transplant (FMT) experiments in GF models, two additional 
independent cohorts were included (see online supplemental 
methods).

Biomarker analysis in the primary cohort
Fasting glucose, liver enzymes and HbA1c were extracted 
from medical records and serum cytokine and hormone panels 
performed (online supplemental methods). Bacterial DNA was 
extracted, amplified (V4 region of the 16S rRNA gene) and 
sequenced (Illumina MiSeq) from all faecal samples as described 
in the online supplemental methods. QIIME2 V.2019.418 was 
used for read pre- processing (pipeline in online supplemental 
methods). Faecal short- chain fatty acid (SCFA) extraction and 
untargeted metabolomics methods are also described in the 
online supplemental methods.

FMT into GF mice
Transplantation experiments were performed using faecal 
samples from the primary prospective cohort and the two addi-
tional cohorts (see online supplemental methods).

Prediction
To predict GDM, we developed a prediction model using our 
prospective cohort (identified T1 biological markers and clin-
ical data) as well as clinical data from our secondary cohort. 
We checked each combination of the following components: 
(1) cytokines, (2) microbiome, (3) general clinical information 
and (4) food questionnaires. The accuracy of the prediction 
was assessed using the area under the curve of the test set, in a 
20%/80% test/training set division and a fivefold cross- validation 
(see online supplemental methods). To examine generalisability 
of our model, we applied the classifier to an independently 
published dataset from a Chinese cohort of 98 pairs of preg-
nant women with and without GDM (matched) who provided 
a faecal sample in week 10–15 of pregnancy.8 We trained the 

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR 
POLICY

 ⇒ Recognition of women at risk of GDM at an early stage of 
pregnancy, with appropriate risk stratification, may allow 
specific recommendations for prevention of the disease—
currently by lifestyle modification and in the future perhaps 
by specific pre/pro/postbiotic supplementation.

 ⇒ If GDM can be prevented, there would be a major reduction 
in adverse outcomes of GDM, for the mother and offspring, in 
both the short term and long term.
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model on our primary cohort and tested the model performance 
on the Chinese cohort.

Statistical analysis
Full statistical methods are presented in the online supplemental 
methods. Briefly, unless otherwise specified, statistical analysis 
was done using non- parametric Mann- Whitney U tests followed 
by false discovery rate (FDR) correction. Mantel’s correlations 
between study features were performed. Association of microbial 
features with GDM was done by Spearman’s rank correlations 
compared with a background distribution followed by a linear 
model to control for main risk factors. For untargeted metabolo-
mics, the differential abundance of the metabolites between the 
groups was identified by Student’s t- tests and FDR correction. 
Microbial features of FMT- recipient mice were associated with 
GDM using MaAsLin2.19 The MetaCyc pathway abundance in 
mouse faeces was predicted using PICRUSt2.20

Data availability
All sequencing data were submitted to European Bioinformatics 
Institue (EBI) (project accession number ERP143097). Metabolo-
mics data were deposited at 10.5281/zenodo.6581068.21 Ethics 
statement and patient and public involvement are described in 
online supplemental methods.

RESULTS
Study design
We prospectively recruited 394 women during T1, 44 (11%) 
of which went on to develop GDM, as diagnosed by glucose 
tolerance test (GTT) during the second trimester of pregnancy. 
The other 350 women served as the control group, hereafter 
‘healthy pregnant women’ (online supplemental figure 1). Of the 
recruited women (regardless of GDM status), 8 suffered spon-
taneous abortion, 7 delivered preterm and 11 had gestational 
hypertension or pre- eclampsia. In addition, 4 had polycystic 
ovary syndrome and 25 had hypothyroidism. These were not 
exclusion criteria.

Of the 34 women in the GDM group who had blood work on 
file before pregnancy, 2 had high HbA1c; none had high glucose. 
Women diagnosed with GDM exhibited other common risk 
factors (table 1) such as higher maternal age and pre- pregnancy 
body mass index (BMI). Following pregnancy (6 weeks–6 
months), we also examined HbA1c (or glucose) levels of these 

women and found one woman with high HbA1c level (out of 
six who did this blood work) and none with impaired glucose 
levels (fasting test/75 g oral GTT, out of 22). While beyond the 
timeline of this T1 study, among women later diagnosed with 
GDM, dietary consultation/lifestyle change was not sufficient for 
nine women who therefore received medication to control their 
GDM.

When examining explained variance between parame-
ters measured (microbiome, SCFA, metabolome, cytokines, 
hormones, diet and lifestyle; figure 1A), using a Mantel test, we 
found that the T1 gut microbiome significantly explained the 
variance of most measurements and was most tightly correlated 
with the faecal metabolomic profile (figure 1B).

Women with GDM exhibit elevated levels of serum inflammatory 
cytokines and low levels of SCFAs in T1
Following evidence of elevated inflammatory biomarkers in 
women diagnosed with GDM,22 we profiled 10 plasma cyto-
kines, chemokines and hormones in both the GDM (n=35) and 
control (n=78) groups and found elevated levels of proinflam-
matory cytokines (interleukin (IL)- 4, IL- 6, IL- 8, granulocyte- 
macrophage colony- stimulating factor and tumour necrosis 
factor-α) among the GDM group (figure 1C; p<0.05, FDR- 
corrected Mann- Whitney U tests) but no differences in leptin 
and insulin. This result was robust when controlling for BMI and 
age (see the online supplemental methods; p<0.05, linear model 
with age and BMI as fixed or random effects).

Another possible early biomarker for GDM are SCFAs, 
which promote glucose homeostasis and suppress inflammatory 
response. We found a significant reduction of two branched 
SCFAs (BSCFAs), isovalerate and isobutyrate, in the GDM group 
(figure 1D; p<0.05, FDR- corrected Mann- Whitney U tests) and 
a similar trend for valerate (p=0.09).

Gut microbiome is associated with GDM pathogenesis
A number of studies have suggested that the gut microbiome 
is altered in women with GDM, post- GDM diagnosis. In our 
study, we did not find differences in T1 gut microbiome ɑ-diver-
sity between women who would and would not develop GDM. 
Principal coordinate analysis of unweighted UniFrac distances 
demonstrated that the microbial communities of healthy women 
and women with GDM trend toward significant differences 
(figure 2A; p=0.06, permutational multivariate analysis of vari-
ance; p=0.23, 0.05, 0.38 for Bray- Curtis, Jaccard and weighted 
UniFrac, respectively), supported by results of differential abun-
dance analyses (below). Notably, when fitting a linear model 
to the distance matrix with GDM outcome and the risk factors 
age and BMI, widely associated with GDM (sequentially using 
adonis2, see the online supplemental methods), none of the vari-
ables were significant.

We next aimed to characterise the specific subset of differ-
entially abundant bacteria: 1 bacterial species was over- 
represented and 16 bacteria under- represented in the GDM 
group. When repeating this analysis while controlling for age 
and BMI, we found 15 under- represented species in the GDM 
group (figure 2B), only 6 of which intersected with the prior, 
uncontrolled analysis. Controlling for confounding variables 
allowed us to distinguish between microbial species associated 
with main risk factors of GDM and the disease itself. We found 
a lower abundance of Prevotella in T1 samples of women who 
would develop GDM, and this result was replicated in mice 
(below).

Table 1 Cohort description
Control GDM P value

Women 350 44

BMI 22.6±4.0 (325) 28.2±7.7 (43) <0.0001

Age (years) 31.2±4.43 (350) 33.1±3.77 (44) <0.01

Gestation 2.38±1.44 (349) 2.93±1.8 (44) 0.02

Parity 0.97±1.04 (349) 1.2±1.0 (44) 0.16

Fasting glucose (mg/dL) 82.46±7.08 (327) 89.30±14.1 (42) <0.0001

Delivery week 39.1±1.73(297) 38.7±1.2 (39) 0.14

Newborn weight (kg) 3.2±0.46 (308) 3.24±1.2 (40) 0.66

Stress (rank: 1–4) 1.41±0.59 (232) 1.57±0.63 (30) 0.17

Education (years) 15.36±2.3 (251) 14.75±2.17 (33) 0.15

Current smoker 32 11 <0.01*

Non- smoker 280 28

Prior smoker 13 1

Data are presented as mean±SD. P values based on Student’s t- test. Parentheses represent sample size.
*P value based on Fisher’s exact test.
BMI, body mass index; GDM, gestational diabetes mellitus.
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Glucose impairment and elevated IL-6 levels of women with GDM 
were phenocopied to mice by FMT
To examine the causal role of the gut microbiome in the patho-
genesis of GDM, faecal samples of age- matched and BMI- 
matched GDM and control samples from the primary cohort 
were transplanted to GF female mice (figure 3A). Microbiota 
characterisation was performed 7 and 21 days post- FMT. The 
GF mice acquired an average of 42 and 48 taxa from donor 
samples 7 and 21 days post- transfer, respectively. The recipient 
mice shared ~60% of their taxa with the donor on day 7 and 
~55% on day 21 (online supplemental figure 2). On day 7, 
the microbial communities were significantly different between 
GDM- recipient and non- GDM recipient mice (figure 3B). 
Consistent with our observation in women, P. copri was found to 
be reduced in GDM- recipient mice (figure 3C). GTTs revealed 
GDM- recipient mice exhibited impaired glucose tolerance 
(figure 3D).

Further, the GDM- recipient mice exhibited elevated levels of 
both IL- 6 (in agreement with our findings in women with GDM) 

and IL- 10 relative to the control- recipient mice (figure 3E and 
online supplemental table 1). No differences were found for 
insulin or leptin levels (online supplemental table 2). We found 
further support for the role of gut microbiota in GDM patho-
genesis with FMT from two additional GDM cohorts (Finnish 
and American women) (figure 3D; online supplemental figure 3 
and online supplemental tables 3–5; combined p=0.15, 0.022, 
0.10, 0.24 for time points 0, 30, 60, 120 min, respectively, Fish-
er’s method).

Lower levels of short peptides in stool of women with GDM
We next compared stool metabolome profiles of women who 
would and would not later develop GDM (n=15 age- matched 
and BMI- matched pairs). First, we found a significant correla-
tion between the microbiome and metabolome of these women 
(r=0.26, p=0.02; Mantel test). Although we were limited in 
sample size, manual exploration of the data revealed that many 
short peptides had differential concentrations (raw p≤0.05) 

Figure 1 First trimester blood and faecal biomarkers in women later diagnosed with GDM. (A) Sampling strategy and study design. Samples 
were collected in first trimester (T1). Stool was collected to profile gut microbiome (GDM: n=28, control: n=236), metabolome (n=15 age/BMI- 
matched pairs) and SCFAs (n=20 age- matched pairs) and to validate results when transplanted into germ- free mice. Blood samples were used to 
profile cytokines and hormones (GDM: n=35, control: n=78). Lifestyle surveys and medical records were collected from all participants. (B) Variance 
explained (square of the Mantel statistic) between all pairs of data types (Mantel test). (C) Serum levels of cytokines and hormones for GDM and 
control women (false discovery rate (FDR)- corrected Mann- Whitney U tests). (D) Concentration of faecal short- chain fatty acids (FDR- corrected Mann- 
Whitney U tests). Boxplots indicate the median and IQR; whiskers show IQR×1.5. oP<0.1, *p<0.05, **p<0.01, ***p<0.001. BMI, body mass index; 
FMT, faecal microbiota transplant; GDM, gestational diabetes mellitus; GM- CSF, granulocyte- macrophage colony- stimulating factor; GTT, glucose 
tolerance test; IFN, interferon; IL, interleukin; ns, not significant; SCFA, short- chain fatty acid; TNF, tumour necrosis factor.  on A
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Figure 2 Differences in faecal microbiome composition in first trimester between women who would and would not develop GDM later. (A) 
Principal coordinate analysis based on 16S rRNA gene sequence profiling of the microbiome (GDM: n=28, control: n=236) using the unweighted 
UniFrac dissimilarity metric coloured by GDM/control (left; p=0.06, PERMANOVA); violin plots represent the distribution of GDM/control on each axis; 
Shannon diversity (top right; R2=0.24 with PCo1) and two phyla that mostly explain the PCo1 and PCo2 variance: Fusobacteria (R2=0.08 with PCo2) 
and Deferribacteres (R2=0.3 with PCo2). (B) The cladogram represents the microbial features associated with the disease state, while controlling for 
the main risk factors, BMI and age, at all taxonomic ranks. Spearman’s rank correlation for each association: a positive association (all associations 
found), implies over- represented features in the healthy control group. Cladogram and bars are coloured by phylum. BMI, body mass index; GDM, 
gestational diabetes mellitus; Unc., unclassified; PERMANOVA, permutational multivariate analysis of variance.
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Figure 3 Phenotype transfer via first trimester (T1) FMT to germ- free mice. (A) Study design. (B) PCoA using the unweighted UniFrac metric. Mice 
receiving FMT from women with GDM exhibit different microbial profiles from mice receiving FMT from the control group (p=0.005, PERMANOVA 
test, n=7 age/BMI- matched FMT donor pairs). (C) Prevotella copri, which was found to be negatively associated with women with GDM, is negatively 
associated with GDM- transplanted mice as well (p=0.04, linear mixed- effects model). (D) Intraperitoneal glucose tolerance test (ipGTT) revealed 
impaired glucose sensitivity in mice transplanted with faeces from women with GDM in this study and in the Finnish cohort (insert) (error bars 
represent ±SEM; *p<0.05 one- tailed Mann- Whitney U test). (E) Serum cytokine level in transplanted mice (*p<0.05 Mann- Whitney U test). Boxplots 
indicate the median and IQR; whiskers show IQR×1.5. BMI, body mass index; FMT, faecal microbiota transplant; GDM, gestational diabetes mellitus; 
IL, interleukin; PCoA, principal coordinate analysis; PERMANOVA, permutational multivariate analysis of variance.
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between control women and women with GDM (online supple-
mental table 6). Following curation of all dipeptides and tripep-
tides, the vast majority of the peptides (50 out of 52) with 
significant differential concentrations showed a clear tendency 
of depletion in women with GDM relative to healthy control 
women (figure 4A,B). These peptides were enriched with the 
hydrophobic amino acids tyrosine, phenylalanine and alanine 
(p=8×10−4, 0.01, 0.01, respectively, FDR- corrected Fisher’s 
exact tests; figure 4C). As metabolome profiling in women 
uncovered important associations to GDM, we decided to use 
PICRUSt2 to predict metabolic pathways enriched in mice from 
the faecal microbiota profiles of the mice in our FMT studies. 
We found 16 differentially abundant metabolic pathways 
between GDM and control- recipient mice (online supplemental 
table 7). We observed an enrichment of the mevalonate pathway 
(PWY- 922; online supplemental figure 4), corresponding with 
evidence of increased IL- 6 levels in the GDM group of both our 
primary cohort and our transplanted mice23 24 and of the heme 
pathway (online supplemental figure 4), previously implicated in 
type 2 diabetes.25

Gut microbiome composition improves prediction of GDM early in 
pregnancy
Finally, we built a machine learning model to predict GDM 
based on microbiome composition, cytokine profile, medical 

history and dietary features, all collected during T1 (figure 1). 
For this aim, we also included T1 clinical data of 66 additional 
women, recruited retrospectively in later stages of their preg-
nancy (secondary cohort, see methods). Our Xgboost model 
predicted GDM with very high accuracy (area under the receiver 
operating characteristic curve (auROC)=0.83; figure 5). When 
making predictions based on only a single feature, we found 
the highest accuracy when using medical records alone (though 
still 7% lower than our combined model), in agreement with a 
recent study.26 Faecal microbiome features resulted in the second 
highest accuracy (auROC=0.73). Using our two- step method 
(see online supplemental methods), we improved the odds ratio 
(OR) from 3.2 to 4, demonstrating the potential for more accu-
rate prediction using the faecal microbiome profile, especially 
relevant if medical records are incomplete or unavailable. To 
validate the predictive power of our microbiome model, we used 
a validation cohort of 98 women who developed GDM with 98 
matched healthy controls from a T1 pregnancy study in China.8 
We first built a model based on the validation cohort to test the 
predictive power for this cohort based only on microbiome data 
(auROC=0.65). Assuringly, when applying our model (the Israeli 
cohort learning set) on this cohort, we found a comparable accu-
racy (auROC=0.6), confirming that despite the striking genetic 
and lifestyle differences between the cohorts, our findings are, at 
least partially, generalisable. We also built a model based on 86 

Figure 4 Analysis of first trimester human faecal metabolomics exhibits lower levels of dipeptides for women with GDM. (A) Volcano plot of all 
metabolites examined in this study, comparing age/BMI- matched metabolite profiles of women who would and would not later develop GDM (n=20 
pairs); peptides are coloured in red. (B) Heatmap of the 52 differentially expressed peptides. Each row denotes a sample (grouped by disease state) 
and each column denotes a peptide. Z- scores were calculated per column. Peptides (columns) were hierarchically clustered based on Euclidean 
distances. (C) Amino acid composition of the differentially abundant peptides. Bars (left y- axis) represent odds ratios (OR) for each amino acid, and 
dots (right y- axis) represent the amino acid count in the differentially abundant peptides. BMI, body mass index; GDM, gestational diabetes mellitus.
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nutritional characteristics measured in our cohort, which yielded 
lower predictive accuracy (auROC=0.64; figure 5) than the 
other features in this study. Further, no differences were found in 
dietary habits between women in our primary cohort who would 
and would not later develop GDM (online supplemental tables 
8 and 9) suggesting that differences in food consumption during 
T1 contribute minimally to GDM pathogenesis.

DISCUSSION
GDM biomarkers
Here, using a combination of ‘omics’ tools, we identify 
biomarkers of GDM onset as early as the first trimester of 
pregnancy. Women in T1, who later develop GDM, exhibit gut 
microbiota dysbiosis as well as increased proinflammatory serum 
cytokines and lower levels of faecal SCFAs. Further, the specific 
microbial changes in their microbiota are directly associated 
with GDM phenotype features (insulin resistance and low- grade 
inflammation) as revealed by FMT into GF animals. Lastly, we 
demonstrated that microbiota samples from T1 alone can be 
used to predict GDM onset and that parameters from patient 
medical records can improve these predictions, providing a 
robust tool for early prediction of GDM.

In our primary cohort, women with GDM exhibit elevated 
levels of serum inflammatory cytokines during T1 of pregnancy. 
Insulin resistance has been associated with elevated secretion of 
proinflammatory cytokines,27 and indeed several studies demon-
strated elevated levels of proinflammatory cytokines during 
T2 and T3.28–30 These altered cytokine profiles in women with 
several months prior to a GDM diagnosis suggest that inflam-
mation may be associated with the pathogenesis of GDM and 
can be used to identify its early onset. This is in line with typical 
GDM and type 2 diabetes symptomatology. Low- grade chronic 
inflammation is associated with obesity in general and maternal 
obesity in particular. But here, we controlled for BMI, suggesting 
that increased pre- GDM- associated inflammation is beyond that 
associated with obesity or general pregnancy. This is in line with 
evidence in the literature of inflammation in cases of type 2 
diabetes31 32 independent of weight. Further, in pregnancy, low- 
grade inflammation levels can differ among women independent 

of BMI, suggesting that some other characteristics like immune–
endocrine interactions may also be at play. In our study, we 
specifically observed higher levels of IL- 6 in both women with 
pre- GDM and in GDM- recipient mice. This suggests that the 
elevated levels of IL- 6 are driven by gut microbes. IL- 6 was 
previously described to play a role in the development of both 
type 1 and type 2 diabetes33 and was proposed as a potential 
biomarker of gestational diabetes in 16 different studies, mostly 
in later stages of pregnancy.34 Our findings in T1, both in the 
focal cohort and in FMT experiments, support inflammation as 
an early marker of GDM.

Another potential early biomarker for GDM is a decrease 
in SCFAs, which contribute to the maintenance of glucose 
homeostasis and suppression of inflammatory response. Hence, 
SCFAs are thought to play a role in obesity- induced inflamma-
tion leading to attenuation of insulin signalling and GDM.35 
We found two BSCFAs reduced in stools of women who later 
developed GDM. BSCFAs are a product of bacterial fermenta-
tion of branched amino acids generated from undigested protein 
reaching the colon. BSCFAs, proposed markers for protein 
fermentation, were found to improve insulin sensitivity36 37 
and reduce inflammation.38 These findings, in line with several 
studies of later- stage pregnancy39 (but see findings from Pappa et 
al40), suggest faecal BSCFAs could serve as a potential biomarker 
for GDM in early stages of pregnancy.

The gut microbiome is associated with GDM months before 
diagnosis
Several studies have found altered gut microbiome composition 
in women with GDM; most were based on samples collected 
post- diagnosis.41 42 Our findings suggest that microbial differ-
ences between GDM and control groups, when controlling for 
confounding variables, exist in T1 and are driven by specific taxa 
rather than community- wide shifts, leading to subtle differences 
in composition.

As an illustrative example, P. copri, which is known to play a 
role in glucose homeostasis43 and has been reported to be more 
abundant in women diagnosed with GDM,41 44 was found to be 
under- represented in women with GDM in our primary cohort, 

Figure 5 Highly accurate prediction of future disease onset among pregnant women during their first trimester. Area under the receiver operating 
characteristic curve (auROC) for each combination of features. Error bars represent ±SD.
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after controlling for confounders, and also in GDM- recipient 
mice. A recent study demonstrated that Prevotella was a marker 
of positive glucose metabolism.45 Kovatcheva- Datchary et al. 
even showed, in a clinical trial, that Prevotella protected against 
Bacteroides- induced glucose intolerance and that improvement 
in glucose metabolism was associated with increased abundance 
of Prevotella.46 This improved glucose metabolism by presence 
of Prevotella was also demonstrated by supplementing mice with 
P. copri. One possible mechanism, recently proposed in rats, is 
that P. copri improves glucose homeostasis through farnesoid 
X receptor signalling and increased bile acid metabolism.47 We 
chose to discuss P. copri specifically as it was found to have lower 
abundance in both women with GDM and recipient mice and 
was previously described to play a role in glucose homeostasis. 
In this study, we also demonstrated the importance of controlling 
for risk factors. For example, Akkermansia muciniphila, which is 
consistently negatively correlated with obesity,48 is prima facie 
negatively associated with GDM when not controlling for the 
difference in BMI between the groups.

FMT highlights IL-6 as a potential contributor to GDM
Based on our multicohort FMT experiments using T1, pre- 
GDM- diagnosis samples, we conclude that gut microbes play a 
causal role in the development of some of the phenotypes of 
GDM and that their role is likely universal as demonstrated by 
conservation across cohorts. Increased levels in IL- 6, in both 
women that would develop GDM and transplanted mice that 
received their microbiota, suggest an important microbiota- 
related inflammatory mechanism in GDM progression, further 
supported by functional profile prediction in mice. Two rele-
vant bacterial pathways, the mevalonate pathway and the heme 
biosynthesis pathway were elevated in GDM- recipient mice. 
There is evidence that mevalonate can have negative implica-
tions on host inflammation—its presence reduces effects of 
statins in decreasing IL- 6 and IL- 8,23 and a kinase deficiency, 
which increases free mevalonate, leads to autoinflammation.49 
The heme biosynthesis pathway was previously associated 
with elevated IL- 650 51 and with type 2 diabetes.52 We do note, 
however, that further research is needed to understand if the 
bacteria themselves, their excreted metabolites or some other 
factors control this phenotype. Only then can we uncover 
specific mechanisms of pathogenesis.

Short peptides association with GDM
We found lower levels of short peptides in T1 stools of women 
with pre- GDM. These peptides are enriched with the amino acids 
phenylalanine, alanine and tyrosine. Previously, plasma levels of 
these three hydrophobic amino acids have also been reported 
to be significantly associated with diabetes.53 One study found 
a link between their elevated blood levels and decreased insulin 
secretion.54 Interestingly, Jiang et al. recently found elevated 
levels of alanine and tyrosine in maternal blood at 12–16 gesta-
tional weeks in women later diagnosed with GDM55; alanine 
is also used by the liver for gluconeogenesis.56 Increased amino 
acid levels in the blood may result in lower levels excreted in 
stool,57 though this requires further study.

Prediction of GDM
We were able to accurately predict future GDM onset in T1, 
weeks before the complication is typically diagnosed. Our 
combined model predicts GDM with very high accuracy, and 
even a microbiota- centric model could predict disease onset in 
two geographically diverse cohorts. This tool allows for accurate 

early prediction, care plans and potential prevention of this 
disease, improving both maternal and fetal outcomes. This is 
further supported by phenotype transfer in samples originating 
from cohorts in three different continents. On the whole, predic-
tion could (and likely should) be improved using local microbiota 
characteristics, but genus- level differences in the microbiome 
can be used as general predictors in the absence of local data.

CONCLUSIONS
In summary, we found broad and consistent evidence that GDM 
pathology begins as early as T1 in a large prospective cohort 
of pregnant women. Additionally, we successfully demonstrated 
that the precursors of GDM originate in the gut microbiota and 
that early- onset GDM has a bacterial signature at least partially 
responsible for the GDM phenotype, evident from phenotype 
transfer following FMT. Our findings suggest that GDM is 
induced through heightened inflammation, initiated by micro-
bial dysbiosis. Future research based on our findings can help 
unravel the underlying mechanisms.

This study has several limitations. Bacterial dysbiosis could 
be a first response to disease onset rather than a cause. Addi-
tionally, the phenotype transfer we observed may be caused by 
other faecal material including metabolites, eukaryotic microor-
ganisms, human viruses and bacteriophages, though in this case 
as well, the bacterial biomarkers identified can be relevant for 
diagnostics. Lastly, throughout this study, we treated the major 
risk factors of GDM, BMI and age, using either matching or 
relevant statistical methods. We cannot exclude the effect of 
other clinical or demographic features on our results and also 
wish to highlight the potentially important contribution of these 
two ‘confounding’ risk factors. Despite limitations, addition of 
microbiome data to a machine learning model improved our 
ability to predict GDM and can even serve as a standalone snap-
shot predictor. These results may be of use in the future when 
exploring preventive measures for GDM.
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Supplementary Figure S1. The study design for the multi-omics and prediction 

modeling arms of this research.  Initially, a Primary Cohort of 400 women was recruited 

prospectively and 394 were included in the study - 44 who would go on to develop GDM 

and 350 who would not (the “healthy control group”). To increase power in our 
predictive models, we recruited a Secondary Cohort retrospectively which included 62 

women with GDM and 4 without. Clinical data from their first trimester of pregnancy was 

retroactively extracted from the medical records following their recruitment in their 

second trimester of pregnancy (after GDM status was already known). 
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Supplementary Figure S2. Relative abundances of transplanted mice at the genus 

level. Columns are labeled by the mouse number and day after transplantation (e.g. 

m1d7 is mouse number 1, 7 days post transplantation). 
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Supplementary Figure S3. intraperitoneal glucose tolerance test (ipGTT) exhibit impaired 

glucose sensitivity in mice transplanted with feces from GDM women in the Finnish cohort 

(upper row) and in the American STORK cohort (lower row). *p<0.05 Mann Whitney U test. 

Combined p=0.15, 0.022, 0.10, 0.24 for timepoints 0,30,60,120 minutes respectively, Fisher’s 
method.  
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Supplementary Figure S4. Relative abundances of the MetaCyc heme pathway (up) 

and mevalonate pathway (down) as predicted by PICTUSt2 for the transplanted mice,  7 

days post transplantation (left) or 21 days post transplantation (right). FDR corrected 

p<0.05, linear mixed model (see methods). 
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Primary cohort sample collection 

Blood samples (15ml) were collected in EDTA tubes from the primary cohort at 

recruitment. The tubes were centrifuged at 4°C for 10 min at 3600 rpm; plasma was 

then stored in coded 1.7 ml tubes at -80°C until processing. Fecal samples from this 

cohort were collected as previously published [1], from participants at 11-14 

gestational weeks, close to recruitment, and frozen immediately at -80°C until 

processing. These samples were used to profile the gut microbiome composition, 

short-chain fatty acids (SCFAs) and the metabolome. 

 

GDM diagnosis method 

In Israel, GDM diagnosis is done with the 2-step procedure [2]: glucose 

challenge test (GCT) and an oral glucose tolerance test (OGTT). GCT screening is 

universal at 24-28 weeks and followed by a diagnostic OGTT if GCT>140mg/dl. 

Sometimes for women with risk factors (BMI, FPG, Past GDM) the OGTT, without 

GCT, is done late in the first trimester. In our study no participants underwent this 

testing prior to providing samples. Exact timing of GDM diagnosis does not affect the 
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findings of our study, and our microbiota, metabolome, and inflammation markers 

provide an earlier window into disease risk than current diagnostic practices. 

 

Additional cohorts 

In addition to the primary and secondary cohorts, for fecal microbiome 

transplant (FMT) experiments in germ-free (GF) models, described below, fecal 

samples from pregnant women in T1 who would and would not go on to develop GDM 

from two additional independent cohorts were included: samples from a  Finnish cohort 

[3–5]  and the Stanford Outcomes Research in Kids (STORK) study  [6]. The subjects 

in the Finnish cohort were recruited during the first trimester of pregnancy to a 

randomized, controlled trial (ClinicalTrials NCT00167700) assessing the impact of 

dietary counseling and a probiotic intervention on various maternal and infant 

outcomes [3–5]. Pregnant women with chronic disease including metabolic 

abnormalities were excluded from the study. Fecal samples were collected at 

recruitment during T1 prior to intervention, and again during the third trimester (T3; the 

latter were not used in this study). Consequently, T1 samples were collected from 

metabolically healthy women. GDM was diagnosed by a two-hour OGTT, which was 

performed at 24-28 weeks of gestation in subjects at increased risk including women 

with excessive weight gain, age >40 years, glucosuria, increased fetal growth or a 

history of GDM or macrosomic newborn(s) in previous pregnancies. GDM was 

diagnosed if plasma glucose concentration was ≥4.8 mmol/L at baseline, ≥10.0 

mmol/L at 1 h or ≥8.7 mmol/L at 2 h during the OGTT. The STORK study is a 

multiethnic birth cohort from California [6]; for this study, a total of 6 mothers diagnosed 

with GDM in T1 were matched on gestational age, maternal age and race/ethnicity to 

6 controls with fecal samples collected between 10.5 to 23 (mean 16) weeks of 

pregnancy.  

 

Serolory: primary cohort 

Cytokine (TNF-α, IFN-γ, GM-CSF, IL-2, IL-4, IL-6, IL-8, IL-10) and hormone 

(insulin and leptin) levels were measured in plasma using the Bio-Plex Pro Human 

Cytokine 8-Plex Panel (Bio-Rad Laboratories Inc., Irvine, CA, USA) according to the 

manufacturer’s instructions. Serum was not available for all women in the GDM group 

such that 35 of the 44 pre-GDM women (and 78 controls) were included in this 

analysis. 
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Microbiome sequencing and pre-processing 

DNA was extracted using the PowerSoil DNA extraction kit (MoBio, Carlsbad, 

CA, USA) according to the manufacturer's instructions and following a 2-minute bead 

beating step (BioSpec, Bartlesville, OK, USA). Purified DNA was used for PCR 

amplification of the variable V4 region using the 515F and 806R barcoded primers 

following the Earth Microbiome Project protocol [7]. For each PCR reaction, the 

following materials were added: 4µl (~40ng/ µl) DNA (sample), 2 μl 515F (forward, 

10μM) primer, 2 μl 806R (reverse, 10μM) primer, and 25 µl PrimeSTAR Max PCR 

Readymix (Takara, Mountain View, CA, USA). PCR reactions were carried out by 30 

cycles of denaturation at 98°C for 10 seconds, annealing at 55°C for 5 seconds, 

extension at 72°C for 20 seconds and then a final elongation at 72°C for 1 minute. 

Amplicons were purified using AMPure magnetic beads (Beckman Coulter, Brea, CA, 

USA) and quantified using the Picogreen dsDNA quantitation kit (Invitrogen, Carlsbad, 

CA, USA). Then, equimolar amounts of DNA from individual samples were pooled and 

sequenced using the Illumina MiSeq platform and MiSeq Reagent Kit V2 (500 cycles) 

at the Genomic Center at the Bar-Ilan University Azrieli Faculty of Medicine, Israel. 

Microbial diversity and composition were assessed using QIIME2 version 

2019.4 [8] First, single-end sequences were imported (qiime import) and 

demultiplexed (qiime demux) with golay error correction. Next, sequences were 

denoised using DADA2 [9] (qiime dada2 denoise-single), trimming the first 5 bases 

and truncating each sequence at position 215. Feature tables and representative 

sequences from the different sequencing runs were then merged. A phylogenetic tree 

was constructed using the fragment-insertion method (qiime fragment-insertion sepp 

[10]). Taxonomic classification was done using a naïve-based classifier trained on the 

99% Greengenes 13_8 V4 reference set [11] (qiime feature-classifier classify-sklearn 

[12]). In order to remove low-confidence features, only features with a frequency 

higher than 50 in at least 5 samples were kept. In addition, features that contained 

mitochondria or chloroplast sequences or that were not assigned to a phylum were 

filtered out. Data were then rarefied to 8,000 (human) or 16,000 (mouse) sequences 

per sample (qiime diversity core-metrics-phylogenetic). 

 

Short-chain fatty acids profiling 

Short chain fatty acid (SCFA) extraction and analysis was performed at the 

MIGAL Galilee Research Institute, Israel. An aliquot of 0.25 gr of wet feces from 20 
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age matched pre-GDM and control pairs was thawed and suspended in 1 ml of an 

orthophosphoric acid solution (8% v/v) and kept at room temperature for 10 min with 

occasional shaking. The mixture was homogenized for 2 min, and the suspension was 

centrifuged at 4°C for 15 min at 14,000 rpm. The supernatant was filtered by additional 

centrifugation at 4°C for 15 min at 14,000 rpm. Next, 225 μl of the supernatant were 

transferred into a polypropylene tube, and 25 μl of 2-methyl-butyric-acid (Sigma-

Aldrich (Merck), St. Louis, MO, USA) were added as an internal standard (IS) to a final 

concentration of 0.001M and transferred to a chromatographic vial for gas 

chromatography analyses. The IS was used to correct for injection variability between 

samples and for minor changes in the instrument response. Vials were stored at -20°C 

before GC analysis. A standard mix (WSFA-4, Sigma-Aldrich, St. Louis, MO, USA) 

was used to determine the concentrations of propionic acid. Standard curves for acetic 

acid and butyric acid (Sigma-Aldrich, St. Louis, MO, USA) were prepared using stock 

solutions of both acids, separately. 

Gas chromatography analysis was then performed. Chromatographic analyses 

were carried out using the Agilent Technologies 6890, a GC system with a mass 

selective detector. A fused-silica capillary column with a free fatty acid phase (DB-

FFAP 122-3232, 30 m×0.25 mm×0.25 um) was used. The carrier gas was helium at a 

flow rate of 13.6 mL/min. The initial oven temperature was 70°C, raised to 100°C at a 

rate of 20°C/min, then raised to 180°C at 8°C/min and held for 3 min, before then being 

raised to 230°C at 20°C/min. The injection volume was 1 μL and the run time of a 

single analysis was 17 min.  

 

Untargeted metabolomics 

Untargeted metabolomics was performed at the MIGAL Galilee Research 

Institute, Israel and Tel Hai College, Israel on fecal samples from 15 pairs of BMI- and 

age-matched women who would and would not go on to develop GDM. Fecal samples 

were extracted using methanol (0.333 mg/ml of MeOH), vortexed, and centrifuged. 

The supernatant was collected and filtered before injection to the LC-MS/MS 

instrument. A pooled matrix prepared by mixing a small volume (20 µl) of each 

experimental sample was used as a quality control (QC) for batch normalization and 

compound identification. 

The samples were injected (5 μL) into UHPLC connected to a photodiode array 

detector (Dionex Ultimate 3000, Thermo Fisher Scientific, Sunnyvale, CA, USA), with 
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a reverse-phase column (ZORBAX Eclipse Plus C18; Agilent, Santa Clara, CA, USA; 

100*3.0 mm; 1.8 μm). The mobile phase consisted of (A) DDW with 0.1% formic acid 

and (B) acetonitrile containing 0.1% formic acid. The gradient was initiated with 2% B 

which was increased to 30% B over 4 min, and then increased to 40% B over 1 min 

before being kept isocratic at 40% B for another 3 min. Then, the gradient increased 

to 50% over 6 min, and to 55% over another 4 min and to 95% over 5 min and kept 

isocratic for 7 min. Finally phase B was returned to 2% over 3 min and the column was 

allowed to equilibrate at 2% B for 3 min before the next injection. The flow rate was 

0.4 mL/min. Blank (methanol) and QC samples were injected at the start of the 

sequence, after every 10 samples, and at the end of the sequence. 

LC–MS/MS analysis was performed with a Heated Electrospray ionization 

(HESI-II) source connected to a Q Exactive™ Plus Hybrid Quadrupole-Orbitrap™ 

Mass Spectrometer, Thermo Scientific™, Germany. ESI capillary voltage was set to 

3500 V, capillary temperature to 300°C, gas temperature to 350°C and gas flow to 10 

mL/min. The mass spectra (m/z 100–1500) were acquired using both positive and 

negative ion modes. Data dependent MS2 analysis was generated for the QC samples 

and used for compound identification. Downstream analysis and data processing were 

performed with the Thermo Scientific™ Compound Discoverer™ program, version 

3.1.0.305 (mass tolerance ≤ 5ppm; intensity tolerance≤ 30%; S/N threshold= 3; 

minimum peak intensity=1,000,000; RT tolerance≤0.2min). Databases used for 

identification were Chemspider [13], MzCloud [14] and KEGG [15].  

 

FMT into germ-free mice 

Transplantation experiments were performed using fecal samples from the 

primary prospective cohort and the two additional cohorts (described in the 

supplementary methods). First, for samples from the primary cohort, we used the 

model of fecal gut microbiome transplants to germ-free mice as conducted 

previously  [1,16,17]. Briefly, germ-free (GF) female Swiss Webster mice (8 weeks old 

for the Israeli cohort; other FMT experiments detailed below) were maintained in 

isolators under a strict 12h light:12h dark cycle with estrous cycles synchronized to 

minimize mouse hormonal variation. Mice were fed an autoclaved chow diet (Harlan-

Teklad, Madison, WI) ad libitum. Stool samples from T1 pregnant women who were 

and were not later diagnosed with GDM were selected based on age- and BMI-

matching without a priori knowledge of bacterial diversity. Fecal matter (0.1 g) was 
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suspended in 1.5 ml of reduced sterile PBS, vortexed for 5 min and settled for 5 min 

to allow larger particles to settle to the bottom of the tube. Handling of human fecal 

samples was performed under anaerobic conditions. Mice were divided into two 

groups with equal weights and then immediately gavaged with 200 μl of fecal slurries 

from the 2 study groups. Each fecal slurry was gavaged into a single mouse and the 

mice were then placed in ventilated cages, 3-4 mice per cage (divided by treatment 

group) and followed for 4 weeks. 

Body weight and chow consumption were monitored weekly. Fecal pellets were 

collected on days 7, 14 and 21, snap-frozen in liquid N2 and stored at −80°C for 

analysis of microbial communities. On day 21, intraperitoneal glucose tolerance test 

(ipGTT) was performed by an injection of 2 g/kg body weight glucose after an 8 h fast. 

Tail blood samples were collected at 0, 15, 30, 60, 90, and 120 minutes and blood 

glucose levels determined. On day 29, mice were sacrificed, and blood samples and 

ceca were collected.  

 

FMT for additional cohorts 

FMT experiments using samples from the additional cohorts were performed in 

the Cornell University animal facility. Deviations from the above protocol, used with 

primary cohort samples, are outlined here: For the Finnish cohort, two sets of 

experiments were performed. PGD1 study: stool samples were obtained in T1 from 6 

women diagnosed with GDM matched to 6 healthy controls from Finland [18]. Twelve 

6-8 week old female GF Swiss Webster mice were gavaged with stool sample slurries 

prepared under anoxic conditions as previously described. Here, an OGTT was 

administered 12 days post inoculation. Glucose dose was 2g/kg; readings were at 0, 

30, 60, 120 minutes, via ACCU CHEK Compact Plus (Roche, Mannheim, Germany). 

PGD2: repeat of PGD1 with 12 mice aged 6-8 weeks and 12 mice aged 11-13 week 

old mice (total of 48). OGTT was performed on day 19.  

For the STORK cohort, PGD3, 8 week old mice and 12 week old mice were 

gavaged with stool collected on gestational age of 16 weeks. As above, each donor 

sample was inoculated into one 8 week old and one 12 week old female mouse. An 

OGTT was administered 12 days post inoculation. Glucose dose was 2g/kg; readings 

were at 0, 30, 60, 120 minutes, as above. 

 

Serology: FMT with primary cohort samples 
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Mouse cytokine (IL-1b, IL-6, IL-10, IL-17A, IFN-γ, TNF-α) and hormone (insulin 

and leptin) levels were measured in plasma (see experimental design below) of mice 

transplanted with samples from the primary cohort using the BioPlex Mouse Cytokine 

8-plex Immunoassay (Bio-Rad Laboratories Inc., Irvine, CA, USA) according to the 

manufacturer’s instructions. The fluorescent signals were measured on a Bio-Plex 

MAGPIX Multiplex Reader (Bio-Rad Laboratories Inc., Irvine, CA, USA). Analyte 

concentrations were calculated using standard curves in the Bio-Plex Manager 

Software. Values out of range (below/above) were imputed with the minimal/maximal 

in range values respectively. 

 

Prediction 

To predict GDM, we developed a prediction model using our prospective cohort 

based on all T1 information. We checked each combination of the following 

components: 1) cytokines, 2) microbiome, 3) general clinical information and 4) food 

questionnaires (15 total combinations). The accuracy of the prediction was assessed 

using the Area Under Curve (AUC) of the test set, in a 20%/80% test/training set 

division and a five fold cross validation.  

The microbiome was merged into a genus level representation, log transformed 

and merged using the standard parameters of the MIPMLP pipeline [19]. For the other 

components, all non-numerical values were replaced by a one-hot representation. All 

missing values were replaced by the median value as of the same category. All values 

were z-scored to an average of 0 and a standard deviation of 1. 

We used a binary XGBoost [[20] with a learning rate of 0.001, 200 estimators, gblinear 

classifiers, a logistic loss function, a lambda regularization of 0.01, and gamma 

regularization of 0.1 with the XGBclassifier function. All other parameters were the 

default of the function. The binary outcome was whether the woman later developed 

GDM. When combining different types of inputs for the classification, the inputs were 

concatenated. 

We limited the external feature analysis to features informative on the training 

set in the first cross validation (Pearson correlation in the training test with the outcome 

of p value <0.1). The resulting feature used were: 

Smoking (Yes/No/Past); BMI; FGT T1 (fasting glucose test, 1st trimester); Sleeping 

hours T1; GOT_T1 (serum glutamic-oxaloacetic transaminase); GPT T1 (serum 
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glutamate-pyruvate transaminase); PAPP-A[mU/L](Pregnancy-associated plasma 

protein A); Aspirin T1 (binary); medications_T1 (chronic medications). 

When performing a two-step approach, we first predicted GDM using only the 

external features above. We then performed a microbiome only classification on the 

entire test set of the first stage classification. This resulted in two scores. One for the 

clinical features and one for the microbiome, further denoted: S(Clinical) and 

S(Microbiome). Samples with a low S(Clinical) or S(Microbiome) value were defined 

as negative. Samples with high scores for both S(Clinical) and S(Microbiome) values 

were defined as positive. 

To examine the generalizability of our model, we applied the XGBoost classifier 

to an independently published 16S rRNA dataset from a cohort in China [21]. Briefly, 

this cohort included 98 pairs of pregnant women with and without GDM (matched) that 

provided a fecal sample in week 10-15 of pregnancy. We applied the same 

hyperparameters that were used on the primary cohort. The processing of the 

microbial data was similar to that mentioned above. Further, we built a model based 

on the intersection of bacteria between the two cohorts (67 shared microbes at the 

genus level). We trained the model on the main cohort and tested the model 

performance on the Chinese cohort. To improve the performance of the transfer 

learning, we used the iMic model  [22]. The iMic model uses the taxonomy structure 

of the microbiome to translate the microbiome into images. Then convolutional neural 

networks (CNNs) are applied to the images. For the cross validity with iMic, we used 

the data at the species level. 

 

Statistical analysis 

Demographic and lifestyle characteristics of women with and without GDM were 

compared using t-tests or Fisher’s Exact tests as appropriate; serum levels of 

cytokines and hormones, concentrations of short chain fatty acids were compared 

using the non-parametric Mann-Whitney U test followed by FDR correction as 

implemented in the scipy stats library of python [23]. 

Microbiome data was preprocessed (see above) and then diversity analysis 

was performed. Differences in alpha-diversity (Shannon’s diversity index) were tested 

using a Kruskal-Wallis test (implemented in qiime diversity alpha-group-significance). 

Un/weighted UniFrac [24], Bray Curtis and Jaccard were used as metrics of paired 

distance between samples (beta-diversity), and the permutation-based PERMANOVA 
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test was performed (qiime diversity beta-group-significance) to test whether distances 

between samples within a group (GDM/control), were more similar to each other than 

they were to samples from the other group. To incorporate the major risk factors (BMI 

and age) into the model, we fit a distance matrix and used diagnosis, BMI and age as 

explanatory variables using adonis2 [25,26]. Since the model inputs variables 

sequentially, we fit 6 different models to examine all of the different orders of the 

variables. 

Mantel’s correlation between features were performed and unweighted UniFrac 

distances was used as the metric for microbial dissimilarity. For all other features, data 

was log transformed and min-max normalized, and Euclidean distance was used as 

the distance metric. 9999 permutations of label mixing were done; the p-value was 

calculated as the proportion of these permutations that lead to a higher explained 

variance than the measured explained variance. 

To associate microbial features with GDM, features were collapsed to the 

different taxonomic levels from phylum to species. Spearman rank correlations were 

used to identify associations between the disease state for each microbial feature at 

each taxonomic level. Disease state labels were mixed 1000 times to receive a 

background distribution, and only correlations with p<0.01 were preserved. To control 

for the main risk factors of GDM, age and BMI, we adjusted associations by building 

a linear model and performed Spearman rank correlations on the linear regression 

residuals. Specifically, we regressed the disease state label over the age and BMI and 

computed the residual. We then computed the correlation between the different 

bacteria and the residual and compared that with the results obtained when scrambling 

the residuals among patients. 

When considering the fecal microbiota profiles from the FMT study, microbial 

features were associated with GDM donors using MaAsLin2 [27] to perform per feature 

linear mixed effects (LME) modeling (see supplementary methods). Features were 

first log transformed and were subjected to cumulative sum scaled (CSS) 

normalization. Disease state (GDM/control) and days-post-FMT were used as fixed 

effects while cage and donor were included as random effects following Eq.1. 

Eq 1: feature ~ disease + days_after_fmt + (1 | cage) + (1 | donor). 

MetaCyc pathway abundances per sample were predicted using 

PICRUSt2  [28] with default parameters and using DADA2 amplicon sequence 

variants as inputs. Pathways with more than 25% zeros across samples were 
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removed. We next applied LME models (Eq. 2) to identify differentially abundant 

pathways between mice with FMT from women with vs. without a later diagnosis of 

GDM. Finally, we used Wald chi-square tests to determine the significance of the 

‘disease’ fixed effect in each model and applied FDR corrections to all generated p-

values. 

Eq 2: pathway ~ disease + days_after_fmt + (1 | mice_ID) 

For untargeted metabolomics, differential abundances of the metabolites 

between the groups were identified by log transformation of the peak areas followed 

by student’s t-tests and FDR correction. Short peptides were manually curated using 

the metabolite name and using a list of dipeptides downloaded from the PubChem 

database  [29]. Enrichment of amino acids was calculated using Fisher’s exact test 

with the following contingency table groups: amino acid of interest, all other amino 

acids, peptides enriched in GDM, peptides not enriched in GDM.  

 

Ethics statement 

Informed consent was obtained from all participants of the main and secondary 

cohorts in accordance with Clalit’s institutional review board approval No.0135-15-

COM for the main cohort and with Rabin Medical Center institutional review board 

approval No.0263-15-RMC for the secondary cohort.  

All experiments involving mice were performed using protocols approved by the 

local animal ethics committee at Bar-Ilan University (number 33-04-2018) and the IRB 

at Cornell University (Number NCT00167700). The STORK subjects were approved 

under Stanford IRB protocol number 17756.  
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Participants were not involved in developing the research question nor the 

design of this study. Main and secondary cohort members were first involved when 

they were enrolled; their informed consent included time required to participate and no 

expectation of involvement in the dissemination of results.  
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