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ABSTRACT
Objective  To develop an interpretable artificial 
intelligence algorithm to rule out normal large bowel 
endoscopic biopsies, saving pathologist resources and 
helping with early diagnosis.
Design  A graph neural network was developed 
incorporating pathologist domain knowledge to classify 
6591 whole-slides images (WSIs) of endoscopic large 
bowel biopsies from 3291 patients (approximately 
54% female, 46% male) as normal or abnormal 
(non-neoplastic and neoplastic) using clinically driven 
interpretable features. One UK National Health Service 
(NHS) site was used for model training and internal 
validation. External validation was conducted on data 
from two other NHS sites and one Portuguese site.
Results  Model training and internal validation were 
performed on 5054 WSIs of 2080 patients resulting in 
an area under the curve-receiver operating characteristic 
(AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-
recall (PR) of 0.98 (SD=0.003). The performance of the 
model, named Interpretable Gland-Graphs using a Neural 
Aggregator (IGUANA), was consistent in testing over 
1537 WSIs of 1211 patients from three independent 
external datasets with mean AUC-ROC=0.97 (SD=0.007) 
and AUC-PR=0.97 (SD=0.005). At a high sensitivity 
threshold of 99%, the proposed model can reduce the 
number of normal slides to be reviewed by a pathologist 
by approximately 55%. IGUANA also provides an 
explainable output highlighting potential abnormalities 
in a WSI in the form of a heatmap as well as numerical 
values associating the model prediction with various 
histological features.
Conclusion  The model achieved consistently high 
accuracy showing its potential in optimising increasingly 
scarce pathologist resources. Explainable predictions can 
guide pathologists in their diagnostic decision-making 
and help boost their confidence in the algorithm, paving 
the way for its future clinical adoption.

INTRODUCTION
Histological examination is a vital component 
in ensuring accurate diagnosis and appropriate 
treatment of many diseases. In routine practice, it 
involves visual assessment of key histological and 

cellular patterns in the tissue, which is a major 
step in understanding the state of various condi-
tions, such as cancer. Histopathology has been at 
the forefront of many advances in care including, 
but not limited to, cancer screening programmes, 
molecular pathology, tumour classification and 
companion diagnostic testing, resulting in a rapid 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Increasing screening rates for early detection 
of colon cancer are placing significant pressure 
on already understaffed and overloaded 
histopathology resources worldwide and 
especially in the UK.

	⇒ Approximately one-third of endoscopic colon 
biopsies are reported as normal, and therefore, 
require minimal intervention, yet the biopsy 
results can take up to 2–3 weeks.

	⇒ Artificial intelligence (AI) models hold great 
promise for reducing the burden of diagnostics 
for cancer screening but require incorporation 
of pathologist domain knowledge and 
explainability.

WHAT THIS STUDY ADDS
	⇒ This study presents the first AI algorithm for 
rule out of normal from abnormal large bowel 
endoscopic biopsies with high accuracy across 
different patient populations.

	⇒ For colon biopsies predicted as abnormal, the 
model can highlight diagnostically important 
biopsy regions and provide a list of clinically 
meaningful features of those regions such as 
glandular architecture, inflammatory cell density 
and spatial relationships between inflammatory 
cells, glandular structures and the epithelium.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The proposed tool can both screen out normal 
biopsies and act as a decision support tool 
for abnormal biopsies, therefore, offering 
a significant reduction in the pathologist 
workload and faster turnaround times.
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rise in demand for histology-derived data.1 This extra workload 
is placing tremendous pressure on pathologists,2 with 78% of 
UK cellular pathology departments already facing significant 
staff shortages.3 The surging demand and staffing challenges ulti-
mately lead to delays in diagnosis,4 negatively impacting patient 
care especially for those with abnormal conditions (eg, cancer or 
serious inflammation) where early intervention and treatment 
are critical.5

New National Institute for Health and Care Excellence 
guidelines for referral of suspected cancer forecast an unprece-
dented rise in demand for endoscopy, with more than 750 000 
additional procedures performed per year by 2020,6 leading to 
a breach in standard wait times in a quarter of National Health 
Service (NHS) hospitals.7 8 Endoscopic large bowel biopsies 
constitute approximately 10% of all requests in the UK NHS 
pathology laboratories. During the examination process, the 
pathologist examines each biopsy slide searching for disease, 
typically working from low to high magnification, and anal-
yses a set of predefined histological features, such as gland 
architecture, inflammation and nuclear atypia for signs of 
abnormality.9 10 The resulting report indicates the presence of 
any disease process and categorises the abnormality into the 
most appropriate diagnosis.11 12 An overview of the patholo-
gist diagnostic decision process for reporting endoscopic colon 
biopsies is provided in online supplemental figure 1. Approx-
imately one-third of colonic biopsy samples are reported as 
normal (online supplemental table 1), representing a substan-
tial workload where the pathologist’s expertise is not fully 
used. The underlying hypothesis of this study is that auto-
mated screening of normal biopsies may help address rising 
histopathology capacity challenges.

Since the advent of digital pathology,13 there has been a 
sharp increase in the development of artificial intelligence (AI) 
tools that enable computational analysis of multi-gigapixel 
whole-slide images (WSIs). In particular, deep learning (DL) 
algorithms have achieved remarkable performance not only in 
routine diagnostic tasks, such as cancer grading14 and finding 
metastasis in lymph nodes, but also in finding origins for 
cancers of unknown primary15 and improved patient stratifi-
cation.16 17 Notably, Campanella et al18 presented a seminal 
paper on clinical-grade WSI classification, while Ehteshami 
Bejnordi et al19 demonstrated that AI models are capable of 
surpassing pathologist performance for breast cancer metas-
tasis detection. These models can be leveraged to help reduce 
inevitable errors in diagnosis, given that humans are natu-
rally prone to mistakes, especially when faced with fatigue or 
distractions.20 21 Despite challenges associated with algorithm 
bias,22 23 AI tools are not as susceptible to these kinds of errors 
and therefore may help mitigate oversight, reduce workload 
and increase reproducibility.

Differentiating between normal and neoplastic colorectal 
WSIs using DL has previously been addressed, with reports 
of excellent performance.24–26 However, distinguishing normal 
from abnormal tissue samples required for large bowel biopsy 
screening remains a challenge, due to the difficulty in detecting 
various subtle conditions, such as mild inflammation. To the 
best of our knowledge, there are no existing multi-centric 
studies for normal versus abnormal classification of large 
bowel biopsies. Existing methods for colonic analysis operate 
on high power subimages (or image patches) and so do not 
explicitly model both the tissue microstructure and macro-
structure, including glandular architecture, inflammatory cell 
density and spatial relationships between inflammatory cells, 
glandular structures and the epithelium. Relying solely on 

DL models to automatically detect histological patterns that 
are diagnostically relevant in small image regions may lead 
to suboptimal performance. Alternatively, explicitly incorpo-
rating histological features that are routinely used by pathol-
ogists during the colon biopsy diagnostic workflow may not 
only improve performance over conventional DL models but 
may also increase transparency and interpretability of the 
algorithm’s decision-making to the pathologist—a key require-
ment for trustworthy AI-based medical decision models.27 28

To help reduce the burden of large bowel biopsy screening, 
we propose the first interpretable AI algorithm for large bowel 
slide classification employing a gland-graph network named 
IGUANA (Interpretable Gland-Graphs using a Neural Aggre-
gator). In the proposed approach, a WSI is modelled as a graph 
with nodes,29–33 each representing a gland associated with a 
set of 25 interpretable features capturing gland architecture, 
intra-gland nuclear morphology and inter-gland cell density. 
The interconnections between these nodes capture the spatial 
organisation of glands within the tissue. The node features were 
developed in collaboration with pathologists and in accordance 
with existing diagnostic pathways to boost predictive accuracy, 
interpretability and alignment with known histological char-
acteristics of a wide range of colorectal pathologies. IGUANA 
identifies highly predictive regions in the biopsy tissue slide and 
provides an explanation as to why they may be highly predic-
tive. Because of the use of biologically meaningful features, 
this explanation can easily be interpreted by a pathologist as 
the basis of the algorithm’s diagnostic decision-making. We 
validate our algorithm on an internal dataset containing 5054 
WSIs and an independent multi-centre dataset containing 1561 
WSIs, achieving the best performance compared with recent 
top-performing approaches. In addition, we analyse predictive 
regions identified by IGUANA along with local and WSI-level 
explanations and show that our approach can identify areas of 
abnormality, such as inflammation and neoplasia. The code for 
IGUANA is available in the open-source domain for research 
purposes (https://github.com/TissueImageAnalytics/iguana) 
and example results can be visualised in an interactive demo 
available at https://iguana.dcs.warwick.ac.uk.

MATERIALS AND METHODS
Study design
A summary of the used datasets and our overall pipeline can be 
seen in figure 1, which consists of the following steps: (1) histo-
logical segmentation, (2) feature extraction and edge generation, 
(3) graph prediction and (4) graph explanation. An overview of 
the experiment design is provided in online supplemental figure 
2 and an in-depth description of the used datasets is given in 
online supplemental section S4.1, including the disease and 
demographic breakdown (online supplemental figures 3 and 4 
and online supplemental tables 2–4). In addition, we provide 
a detailed method description in online supplemental sections 
S4.1–S4.7.

Patient and public involvement
Lay members have made a valuable contribution to this project 
in ensuring that the patient is at the heart of this project. Three 
lay advisors have been working with us since the conception of 
this project. One of the advisors is part of the National Cancer 
Research Institute consumer network and Independent Cancer 
Patient’s Voice group, who are both supportive of new technolo-
gies being brought into the NHS for patient benefit.
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Figure 1  Illustration of the overall pipeline for colon tissue classification with gland-graph convolutional networks. (A) Overview of the data used 
in our experiments from four different centres using different scanners. (B) Summary of the pipeline, which involves graph construction, gland-graph 
inference and gland-graph explanation. (C) Zoomed-in image regions and corresponding results taken from the example in B. ESNE, East Suffolk and 
North Essex; UHCW, University Hospitals Coventry and Warwickshire; WSI, whole-slide images.
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RESULTS
Large-scale cross-validation for colon biopsy screening
To rigorously evaluate our approach for colon biopsy screening, 
we performed 3-fold cross-validation using 5054 H&E-stained 
colon biopsy WSIs from University Hospitals Coventry and 
Warwickshire (UHCW), where each slide was labelled as either 
normal or abnormal. Interpretable screening of normal colon 
biopsies is a challenging problem due to a wide spectrum of 
large bowel abnormalities including a variety of neoplastic 
and inflammatory conditions. Figure  2 shows the results of 
IGUANA, achieving an average area under the receiver oper-
ating characteristic (AUC-ROC) curve of 0.9783 ‍±‍ 0.0036 and 
an AUC precision-recall (AUC-PR) of 0.9798 ‍±‍ 0.0031. We also 
include results obtained using other existing slide-level classi-
fication algorithms such as Iterative Draw and Rank Sampling 
(IDaRS)34, Clustering-constrained Attention Multiple Instance 
Learning (CLAM)35 and a random forest (RF) baseline classifier 
using our glandular features (denoted by Gland-RF). We observe 
that IGUANA achieves the best performance compared with 
both patch-based methods (IDaRS and CLAM), demonstrating 
its strong predictive ability given that it uses only 25 features 
per gland. We provide additional comparative results between 
IGUANA and IDaRS in online supplemental figure 5. Detailed 
statistical results are also provided in online supplemental 
tables 5–9. Note that despite IGUANA outperforming it, the 
Gland-RF model produces comparable performance—signifying 
the strength of our set of clinically derived features—although 
without the localised interpretability provided by IGUANA. 
Also, as opposed to the two patch-based methods, IGUANA 
provides concrete justification as to why a certain diagnostic 
class was predicted. We go into further detail on interpretability 
and explainability later in this section.

In addition, we assess differences in model performance across 
sex, age, ethnicity and anatomical site of the biopsy. For each 
subgroup-level analysis, we run 100 bootstrap runs to compute 
average AUC-ROC and its SD across subcategories (online 
supplemental table 10) and observe that our method is not biased 
towards any particular subgroup with only minor differences.

Model generalisation to independent cohorts
A true reflection of a model’s clinical utility requires the assess-
ment of its performance on completely unseen cohorts. For this, 
we used three additional cohorts of H&E-stained colon biopsy 
slides, providing a total of 1537 WSIs. These cohorts consisted 
of 1132 slides from IMP Diagnostics Laboratory in Portugal,25 
148 slides from East Suffolk and North Essex (ESNE) NHS 
Foundation Trust and 257 slides and South Warwickshire NHS 
Foundation Trust, where slides were again categorised as either 
normal or abnormal. We observe from figure 2 that our model 
attains high performance for both the ESNE and South Warwick-
shire cohorts, reaching AUC-ROC scores of 0.9567 ‍±‍ 0.0155, 
0.9649 ‍±‍ 0.0025 and 0.9789 ‍±‍ 0.0023 and AUC-PR scores of 
0.9731 ‍±‍ 0.0105, 0.9466 ‍±‍ 0.0034 and 0.9949 ‍±‍ 0.0006 for 
ESNE, South Warwickshire and IMP datasets, respectively. It is 
evident that there is a large difference in performance between 
IGUANA and other approaches on the external cohorts, signi-
fying that superior generalisation to unseen data is a strength 
of our model. At a sensitivity of 0.99, we obtain a percentage 
increase over IDaRS of 47.4%, 63.6% and 58.9% for IMP, 
ESNE and South Warwickshire cohorts, respectively. This may 
be partly due to the ability of our initial segmentation model to 
perform well across images with different staining protocols.36 

Example results obtained by this model across the four datasets 
are shown in figure 3.

Analysis of expected reduction in pathologist workload
The real-world value of our approach is determined by its ability 
to reduce pathologist workload. As our model is intended for 
screening, it must achieve high sensitivity. Therefore, assessment 
of the specificity at high sensitivity cut-off thresholds provides a 
good indication of its potential effectiveness as a screening tool. 
Here, the specificity is indicative of the percentage reduction 
in normal slides that require pathologist review. In the middle 
column of figure 2, we display the specificity of our model at 
sensitivities of 0.97, 0.98 and 0.99 on all datasets used in our 
experiments, where we see that IGUANA sustains the best perfor-
mance at various cut-offs compared with other methods. During 
internal cross-validation, we obtain specificities of 0.7865 ‍±‍ 
0.0429, 0.6720 ‍±‍ 0.1128 and 0.5409 ‍±‍ 0.1210 for sensitivities 
of 0.97, 0.98 and 0.99, respectively. For independent validation, 
our method obtains average specificities across the three external 
datasets of 0.7513 ‍±‍ 0.0919, 0.6679 ‍±‍ 0.0779 and 0.5487 ‍±‍ 
0.1599 for sensitivities of 0.97, 0.98 and 0.99. Therefore, this 
indicates that at a sensitivity of 0.99, our method is able to 
screen around 54% of normal cases during both internal and 
external validation.

In online supplemental figure 6, we show the proportion of 
slides that require pathologist review to achieve a certain sensi-
tivity.18 In these plots, we consider a target sensitivity of 0.99, 
which is reasonable due to high levels of interobserver disagree-
ment for conditions such as mild inflammation. We also show 
with a vertical dashed line the proportion of abnormal slides 
in each dataset, which indicates the minimum number of slides 
that need to be reviewed for screening. For each of the cohorts, 
we observe that for our target of 0.99 sensitivity our model can 
screen out 32%, 31%, 17% and 13% of slides from UHCW, 
South Warwickshire, ESNE and IMP datasets, respectively. If 
considering a sensitivity of 0.97, we can screen out 44% of slides 
from UHCW, 46% from South Warwickshire, 30% from ESNE 
and 19% from IMP.

Local feature explanations increase model transparency
A major component of IGUANA is the ability to provide an 
interpretable and explainable output. In figure  4, we display 
visual explanations of the most predictive nodes and features 
given by IGUANA. Node explanations are shown in the form 
of a heatmap, where relatively high values indicate glandular 
areas that contribute to the slide being classified as abnormal. 
Therefore, we should expect that all glands in a normal slide will 
have low values in the associated heatmap as shown in figure 4A, 
where no glands contribute to the slide being classified as 
abnormal. Figure 4B–D shows WSIs with hyperplastic polyps, 
inflammation and adenocarcinoma, respectively. Hyperplastic 
polyps are often characterised by intraluminal folds and lumen 
dilation. On the other hand, inflammatory conditions usually 
have an increased number of lymphocytes, plasma cells, eosino-
phils and neutrophils within the lamina propria and potentially 
within the glands. Other indicators of inflammation can include 
crypt branching and crypt dropout. Colon adenocarcinoma is 
often denoted by irregular glandular morphology, epithelial 
nuclear atypia and multiple lumina. High-grade cancers typically 
lose their glandular appearance and form solid sheets of tumour 
cells. It can be observed that IGUANA is able to pick up abnormal 
glands with features in line with the above descriptions. In partic-
ular, we see that the most predictive glands in figure 4B contain 
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Figure 2  Results obtained across the four cohorts used in our experiments. Here, we display the ROC and PR curves along with the respective 
AUC scores of our approach compared with IDaRS, CLAM and Gland-RF (a random forest approach using the same handcrafted features with global 
aggregation). We also display the specificities obtained at sensitivity cut-offs of 0.97, 0.98 and 0.99. The shaded areas in the curves and the error bars 
in the bar plots show one SD from the results. AUC, area under the curve; CLAM, Clustering-constrained Attention Multiple Instance Learning; ESNE, 
East Suffolk and North Essex; IDaRS, Iterative Draw and Rank Sampling; PR, precision-recall; RF, random forest; ROC, receiver operating characteristic; 
UHCW, University Hospitals Coventry and Warwickshire.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2023-329512 on 12 M

ay 2023. D
ow

nloaded from
 

http://gut.bmj.com/


1714 Graham S, et al. Gut 2023;72:1709–1721. doi:10.1136/gutjnl-2023-329512

Colon

lumen with a clearly irregular morphology, whereas highlighted 
glands in figure  4C show areas with a high degree of inflam-
mation. The adenocarcinoma heatmap in figure 4D highlights 
areas that have lost their conventional glandular appearance. 
Specifically, epithelial nuclei are no longer arranged at the gland 
boundary, cribriform architecture is observed and glands appear 
much larger, due to the formation of tumour cell sheets.

In addition to the node explanation heatmap, IGUANA 
indicates why certain glands are being identified as abnormal. 
This is useful because it can provide confirmation that the 
correct features are being identified by the model, giving 
researchers and clinicians confidence that it is performing 
as expected. This strategy can also be used to identify addi-
tional features within abnormal conditions. To show this, 
in figure  4, we display the most predictive glands in each 
slide and provide the corresponding feature explanations. 
Specifically, we display the top ten features in descending 
order of significance, along with their corresponding feature 
importance values between 0 and 1. Here, we expect that 
the feature explanations should align with what is observed 

in the associated cropped regions. In our hyperplastic polyp 
example, we see that the top glands (ie, 1, 2 and 3) contain 
lumen with abnormal morphology, whereas lumen dilation is 
observed in top gland 4. In line with this, lumen morphology 
and lumen composition are high-scoring features across the 
provided examples. We also observe that lumen size and 
organisation of epithelial nuclei within the glands are often 
found to be important features. In the example shown in 
figure  4C, we observe that top glands have a high degree 
of inflammation, which is matched by top features, such as 
inflammatory cell density, gland density and lamina propria 
neutrophil proportion. In the adenocarcinoma example, 
we see that the top four glands are all large, have irregular 
morphology and often display solid sheets of tumour cells 
with no obvious glandular structure. This is highlighted in 
the feature explanation, where gland morphology, gland 
size and epithelial organisation are consistently top-ranked 
features. Here, epithelial organisation describes how the 
epithelial nuclei are positioned at the gland boundary. Due to 
the presence of solid tumour patterns across the top glands, 

Figure 3  Example segmentation results obtained by our multi-task model across the four datasets used in our experiments. The top row shows 
normal examples, whereas the bottom row shows abnormal examples. In particular, the bottom-left example from ESNE shows a hyperplastic polyp 
and the bottom-right example from South Warwickshire shows inflammation. AUC-PR, area under the curve-precision-recall; CLAM, Clustering-
constrained Attention Multiple Instance Learning; ESNE, East Suffolk and North Essex; IDaRS, Iterative Draw and Rank Sampling; IGUANA, 
Interpretable Gland-Graphs using a Neural Aggregator; RF, random forest; UHCW, University Hospitals Coventry and Warwickshire.  on A
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Figure 4  Visualisation of node and feature explainability. We display the overlay of the node-level explanations in the form of a heat map showing 
the most predictive nodes in the WSI. We also show cropped images of the four most predictive nodes within each WSI along with the associated 
ten most predictive features and their feature importance value. The colour of the boundary of the top nodes (glands) indicates the corresponding 
value in the node explanation heatmap. (A–D) Show example slides that are normal, hyperplastic, inflammatory or cancerous, respectively. GEC, 
gland epithelial clustering; GECV, gland epithelial clustering variation; GED, gland epithelial density; GEO, gland epithelial organisation; GEoD, gland 
eosinophil density; GEOV, GEO variation; GES, gland epithelial size; GESV, GES variation; GD, gland density; GLD, gland lymphocyte density; GM, gland 
morphology; GND, gland neutrophil density; GS, gland size; ICD, Inflammatory cell density; LEO, Lumen epithelial organisation; LEOV, Lumen epithelial 
organisation variation; LPCP, lamina propria connective proportion; LPEoP, lamina propria eosinophil proportion; LPLP, lamina propria lymphocyte 
proportion; LPNP, lamina propria neutrophil proportion; LPPP, lamina propria plasma proportion; WSIs, whole-slide images.
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this feature is frequently highlighted in cancerous cases. We 
provide additional visual examples of the interpretability of 
our model output in figure 5.

WSI-level feature explanations are consistent with known 
histological patterns
In figure  6A, we show WSI-level explanations averaged over 
different subconditions in the UHCW and IMP cohorts. We 
focus on these datasets because they are the largest, with both 
containing over 1000 samples. Here, we plot top 10 features 
across the various subconditions for increased readability. These 
plots can be used both to confirm that the global explanations 
are as expected and to understand which features are partic-
ularly important for categorising a certain subcondition as 
abnormal. In both UHCW and IMP cohorts, the normal radar 
plots have a small radius, indicating that no feature contrib-
utes to the slide being classified as abnormal. For inflammatory 
cases, the UHCW and IMP radar plots show that a wide range of 
features can contribute to the slide being classified as abnormal, 
where there may be both cellular and architectural changes in 
the tissue. However, the most important features that can differ-
entiate between other subconditions include inflammatory cell 
density, gland lymphocyte infiltration and gland density. Gland 
density can be indicative of gland dropout, which is a sign of 
inflammation. The UHCW radar plots for dysplasia and adeno-
carcinoma are similar, where the most important features are 
gland morphology, gland epithelial cell organisation, gland 
epithelial cell size and variation of gland epithelial cell size. This 
is in line with the key expected histological patterns observed 
within these tissue types. Likewise, these plots are similar to the 
low-grade and high-grade dysplasia plots for the IMP cohorts, 
indicating that the correct histological features are being high-
lighted when providing the WSI feature explanation. For 
hyperplastic polyps, we can see that lumen composition, lumen 
morphology and epithelial cell organisation have a large influ-
ence in the slide being classified as abnormal. Lumen compo-
sition is the ratio of lumen to gland size, and therefore, can 
identify glands with lumen dilation, which is a distinguishing 
feature of hyperplastic polyps. Conversely, lumen serrations, 
which are present in hyperplastic polyps, can lead to irregular 
lumen morphology, further validating the feature explanations 
output by our model.

WSI-level feature explanations identify population subgroups
In figure  6B, we perform hierarchical biclustering of all 
abnormal slides and WSI-level feature importance scores to 
help identify various subgroups that exist within the UHCW 
dataset. At the bottom of the plot, we identify various patient 
clusters which have varying histological appearance. These are 
numbered as follows: (1) general sign of inflammation, without 
neutrophil infiltration; (2) inflammation with a high degree of 
both lymphocytic and neutrophilic gland infiltration; (3) mainly 
neoplastic slides with irregular-shaped glands and large epithelial 
cells; (4) irregular gland morphology, with minimal inflamma-
tion; (5) abnormal lumen morphology and composition, with 
signs of inflammation in the lamina propria; (6) increased eosin-
ophilic infiltration in the lamina propria and (7) neoplastic slides 
with gland epithelial clustering. Therefore, this gives us confi-
dence that the network is learning key histological differences 
among the dataset to make an informed WSI-level prediction. 
More fine-grained clusters can be observed by referring to the 
associated dendrograms in the biclustering plot.

Interactive visualisation of results
We provide an interactive demo at https://iguana.dcs.warwick.​
ac.uk showing sample IGUANA results and highlighting the 
full output of our model at global and local levels, including 
the intermediate gland, lumen and nuclear segmentation results. 
In particular, we display the node explanations overlaid as a 
heat map on top of the glands and the local explanations by 
hovering over each node in the overlaid graph. Here, we provide 
the top five features to provide insight into what is contributing 
to certain glands being flagged as abnormal. It may also be of 
interest to assess the difference in features for nodes across the 
WSI. Therefore, we also enable visualisation of each of the 25 
features overlaid on top of the glands as heat maps.

DISCUSSION
There has been a staffing crisis in pathology for many years,37 
which is being further exacerbated by the increased demand for 
histopathological examination. Embracing new technologies and 
AI in clinical practice may be necessary as hospitals seek to find 
new ways to improve patient care.38 AI screening of large bowel 
endoscopic biopsies holds great promise in helping to reduce 
these escalating workloads by filtering out normal specimens. 
However, currently there does not exist a solution that can do 
this with a high predictive performance. Also, explainable AI 
is now recognised as a key requirement for trustworthy AI in 
human-centred decision-making,28 yet is usually not considered 
in many healthcare applications. Therefore, in this study, we 
developed an AI model that can accurately differentiate normal 
from abnormal large bowel endoscopic biopsies, while providing 
an explanation for why a particular diagnosis was made.

We demonstrated that our proposed method for automatic 
colon biopsy screening could achieve a strong performance 
during both internal cross validation (mean AUC-ROC=0.98, 
mean AUC-PR=0.98) and on three independent external data-
sets (mean AUC-ROC=0.97, mean AUC-PR=0.97). Highly 
sensitive tools for screening are required to minimise the number 
of undetected abnormal conditions, since the false negative 
report is likely to lead to delayed diagnosis and potential patient 
harm. We believe a sensitivity of 0.99 is a reasonable target 
because the ground truth being used is the diagnosis provided by 
pathologists, which may have less than perfect sensitivity. This is 
also reflected in guidelines for breast biopsy screening in the UK, 
where sensitivities of 0.99 are expected.39 Currently, we obtain 
promising specificities of 0.789 ‍±‍ 0.043 at a sensitivity of 0.97 
and 0.541 ‍±‍ 0.121 at a sensitivity of 0.99, which could have 
a positive impact on reducing pathologist workloads. We also 
show in online supplemental figure 6 the expected reduction in 
clinical workload, where we report up to a 32% time saving by 
screening out normal biopsies that do not require assessment, 
while still maintaining a sensitivity of 0.99.

To understand misclassifications made by our model, we show 
six normal slides with the highest predicted abnormality scores 
in online supplemental figure 7. After inspection, we see that 
IGUANA correctly classifies these slides and therefore identifies 
mislabelling errors in the dataset. Here, the examples should 
have been labelled as either inflammatory or hyperplastic polyp. 
In the figure, we include sample image regions, as well as local 
and WSI-level feature explanations that are reflective of the true 
category of each slide. In addition, we performed a false negative 
analysis, where in online supplemental figure 8a we show the 
counts of various subconditions along with the corresponding 
number of false negatives. In online supplemental figure 8b, we 
show the false negative rate of each category. It can be observed 
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Figure 5  Additional visualisation of node and feature explainability. As before; we display the overlay of the node-level explanations in the form 
of a heat map showing the most predictive nodes in the WSI. We also show cropped images of the four most predictive nodes within each WSI along 
with the associated ten most predictive features and their feature importance value. (A–D) Show slides that are normal, inflammatory (with crypt 
abscesses), high-grade dysplasia or adenomatous polyps, respectively. GEC, gland epithelial clustering; GECV, gland epithelial clustering variation; 
GED, gland epithelial density; GEO, gland epithelial organisation; GEoD, gland eosinophil density; GEOV, GEO variation; GES, gland epithelial size; 
GESV, GES variation; GD, gland density; GLD, gland lymphocyte density; GM, gland morphology; GND, gland neutrophil density; GS, gland size; 
ICD, Inflammatory cell density; LEO, Lumen epithelial organisation; LEOV, Lumen epithelial organisation variation; LPCP, lamina propria connective 
proportion; LPEoP, lamina propria eosinophil proportion; LPLP, lamina propria lymphocyte proportion; LPNP, lamina propria neutrophil proportion; 
LPPP, lamina propria plasma proportion; WSIs, whole-slide images.
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that the model found slides with lymphocytic and collagenous 
colitis somewhat challenging, with false positive rates of 0.29 
and 0.46, respectively. Explicit modelling of the subepithelial 
collagen band should enable us to better detect collagenous 
colitis. It may be worth noting that there was a relatively small 
number of collagenous colitis samples in all four cohorts and so 
they may not have a large impact on the overall performance. 

Also, a high false negative rate was observed in the mild inflam-
mation category, but this is to be expected because they are visu-
ally similar to normal samples.

In online supplemental figure 9, we show that our model 
output is well calibrated and hence can be interpreted as a 
measure of confidence. To enable explainable predictions, our 
algorithm relies on an accurate intermediate segmentation step, 

Figure 6  Analysis of global explanations. (A) Radar plots showing global feature importance for subconditions in the UHCW and IMP datasets. 
(B) Hierarchical biclustering of feature importance values. 1–7 denote prominent clusters after biclustering, with the following distinguishing 
histological characteristics: (1) inflammation, without gland neutrophil infiltration; (2) inflammation with both gland lymphocytic and neutrophilic 
infiltration; (3) neoplasia with irregular gland morphology and large epithelial cells; (4) irregular gland morphology with minimal inflammation; (5) 
hyperplasia with irregular lumen morphology and composition with inflammation in the lamina propria; (6) eosinophilic infiltration in the lamina 
propria and (7) neoplasia with gland epithelial cell clustering. UHCW, University Hospitals Coventry and Warwickshire.
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which requires many pixel-level annotations. This can be a time-
consuming step and can therefore act as a bottleneck in the 
development of similar methods. In addition, the type of features 
that can be incorporated into our AI algorithm are dependent 
on which kinds of histological objects are initially localised. For 
example, we do not currently detect goblet cells and so do not 
include features indicative of goblet cell-rich hyperplastic polyps. 
Other histological objects that could be added include giant cells, 
signet ring cells and mitotic figures. In addition, although we 
segment the surface epithelium, we do not extract any associated 
features that can help identify conditions such as collagenous 
colitis. Our method also does not assess surface abnormality to 
detect intestinal spirochaetosis or pigment to detect melanosis 
coli. These shortcomings will be addressed in future work. 
Visual examples of features used within our framework, along 
with examples from the 5th and 95th percentiles, are given in 
online supplemental figure 10. We also provide a more in-depth 
description of these features, along with what conditions they 
can detect in online supplemental table 11. In online supple-
mental figure 1b, we highlight diagnostic features (in a red 
colour) that are not currently modelled in our framework.

There have been recent AI approaches developed for cancer 
detection in colonic WSIs.24 40 41 However, such approaches 
cannot be used for screening in clinical practice because they 
often fail to identify non-cancerous abnormalities such as inflam-
mation. Similarly, AI models have been developed for detecting 
polyps,42 43 inflammatory bowel disease44 or grading dysplasia,25 
but again they do not address the problem of screening normal 
from all types of abnormality. Our approach uses retrospective 
biopsies from pathology archives, where data are accordingly 
labelled as normal or abnormal to reflect the clinical screening 
process. Therefore, unlike other approaches, our AI model can 
be directly implemented as a triaging tool and may therefore 
have a profound effect on reducing pathologist workloads. In 
addition, most recent automatic methods rely on weak supervi-
sion, where only the overall diagnosis is used to guide the algo-
rithm. This strategy may be advantageous because it does not 
rely on the time-consuming task of collecting many annotations. 
However, this limits the interpretability of the output, which 
may hinder the acceptance of such models in hospitals.

Analysis of colon biopsy slides by visual examination, either 
under the microscope or more recently on the computer screen, 
is the current gold standard. However, the current practice is 
unsustainable with increasing numbers of specimens that require 
examination and due to staff shortages, where only 3% of NHS 
hospitals report adequate staffing.3 With advances in cancer 
screening programmes and no immediate sign of the pathologist 
staffing crisis being resolved, additional measures to assist with 
reporting will be essential. Our proposed AI model addresses this 
unmet need by automatically filtering out normal colonic biop-
sies that require minimal intervention, yet make up a substan-
tial proportion of all cases, with high degree of accuracy. As a 
result, our model significantly reduces the number of samples 
that require review by pathologists.

AI models are now starting to be used in clinical practice for 
prostate cancer detection, where a clear advantage for clinicians 
has been demonstrated in terms of reducing workloads and 
increasing reporting accuracy.45 46 There is a growing evidence 
that automated methods for tissue diagnosis can transform 
pathologist workflows and help drive new policies in healthcare. 
However, no such tool currently exists for screening large bowel 
endoscopic biopsies, perhaps due to the fact that no automated 
tool has been able to accurately detect all kinds of abnormality, 
including inflammation, dysplasia, hyperplasia and neoplasia. 

With its triaging capability, the proposed model promises to have 
positive implications on patient treatment due to faster time to 
diagnosis, resulting in the potential for early intervention where 
it is needed the most.

The proposed model may be particularly advantageous 
in low-income countries, where there exists an even greater 
shortage of pathologists. Despite the obvious benefit of 
outsourcing tasks to AI in these countries, there still remains a 
lack of infrastructure for digital pathology, which is a require-
ment for our approach. A few options may be explored to 
overcome this challenge, such as using digital mobile phone 
cameras,35 47 acquiring low-cost consumer-grade scanners and 
obtaining them via financing, leasing, philanthropic sources or 
non-profit organisations. Rather than investing in expensive 
hardware and performing full clinical integration, a cloud-
based setup may be a more affordable option in low-resource 
settings, where scanned slides can be uploaded to the internet 
for processing. With AI models now appearing rapidly on the 
market, it is becoming increasingly important for initiatives to 
be put in place by policy-makers to help with the digitisation 
of pathology labs across the world, enabling the widespread 
adoption of computational pathology.

We have shown that IGUANA offers promise as an effective 
tool for AI-based colon biopsy screening with a strong emphasis 
on diagnostic interpretability providing concrete justification 
as to why a certain diagnostic class was predicted and making 
its predictions transparent and explainable. The proposed AI 
method can help alleviate current issues in pathologist shortages 
in the NHS and worldwide and reduce turnaround times of the 
screening results. Before deployment in clinical practice, a larger 
scale validation is required with further analysis of IGUANA’s 
feature explanation output. In addition, considerable time needs 
to be invested into extending the current user interface so that 
it easily integrates with current pathologists’ clinical workflows. 
This will involve a detailed study on the effectiveness of the 
decision support tool within abnormal biopsies and assessing its 
implications on time to report the diagnosis.
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Supplementary material 

S1 Pathologist diagnostic algorithm 
 

 
Supplementary Figure 1: Pathologist colon screening diagnostic algorithm. a, Decision process for diagnosing colon biopsies as normal. 
If any abnormal feature is found during this process, then the entire tissue sample is reported as abnormal. b, feature breakdown within 
each category. Red regions show features not yet explicitly modelled in our approach. 
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S4 Methods 

S4.1 WSI datasets 
We collected data from four patient cohorts containing routine Haematoxylin and Eosin (H&E) stained 

WSIs of endoscopic colon biopsies from the following centres: 1) University Hospitals Coventry and 

Warwickshire (UHCW) NHS Trust, United Kingdom; 2) South Warwickshire NHS Foundation Trust, 

United Kingdom; 3) East Suffolk and North Essex (ESNE) NHS Foundation Trust, United Kingdom and 

4) IMP Diagnostics Laboratory, Portugal1. UHCW, South Warwickshire and ESNE WSIs were sampled 

consecutively, using retrospective data originally scanned between the years 2017-2020. Glass slides from 

UHCW were digitised with a GE Omnyx slide scanner at a pixel resolution of 0.275 microns per pixel 

(MPP). Slides from ESNE and South Warwickshire Hospitals were digitised with 3DHISTECH scanners 

at pixel resolutions of 0.122 MPP and 0.139 MPP, respectively. IMP Diagnostics slides were digitised with 

a Leica GT450 scanner at a pixel resolution of 0.263 MPP. In total, we collected 6,591 WSIs from 3,291 

patients, with 5,054 from UHCW, 148 from ESNE, 257 from South Warwickshire and 1,132 from IMP 

Diagnostics. To rigorously evaluate our approach for colon biopsy screening, we performed 3-fold internal 

cross-validation on the UHCW dataset and held out the remaining three datasets for independent external 

validation. When creating the folds for internal cross-validation, the data was split with stratification at 

patient-level to ensure that our method was evaluated on completely unseen cases. 

 

Collaborating pathologists categorised WSIs from UHCW, ESNE and South Warwickshire at slide-level 

into a ground-truth diagnosis label of either normal, non-neoplastic or neoplastic with consensus review of 

discordant cases. For this study, non-neoplastic and neoplastic classes were combined into a single 

abnormal category to reflect the clinical screening procedure. The slide review was completed by a team 

spanning five consultant and four trainee pathologists. Normal slides were reviewed by pathologists in 

training, but all were originally signed out of the laboratory by consultant pathologists holding FRCPath 

and working at UHCW. All abnormal slides, including SAPI (Slightly Abnormal but Pathologically 

Insignificant), were reviewed by consultant pathologists holding fellowship of the Royal College of 

Pathologists and with a sub-specialty interest in GI pathology. SAPI slides, containing only a subtle level 

of inflammation, were excluded from experiments as they did not clearly belong to either category. Yet, it 

is important to note that mild inflammatory slides were still included in all experiments. In these cases, 

distinction between normal and mild inflammation was done by consensus review of slides by consultant 

pathologists working at UHCW with sub-specialty expertise in GI biopsy reporting.  

 

A wide range of histological conditions were present across the datasets to reflect the clinical screening 

procedure. Therefore, the cohorts are representative of real-world settings for the clinical question at hand. 

A full summary of the specific diagnoses is shown in Supplementary Table 2. WSIs from IMP diagnostics 

were originally categorised as either non-neoplastic, low-grade dysplasia or high-grade dysplasia1, where 

the non-neoplastic category contained a mixture of normal, inflammatory and hyperplastic slides. 

Therefore, our team of pathologists additionally reviewed non-neoplastic slides from IMP to separate 

normal from abnormal tissue samples. In our final curated datasets, 42% of slides from UHCW, 61% from 

ESNE, 40% from South Warwickshire and 84% from IMP Diagnostics were labelled as abnormal. We 

provide a data description diagram showing the experiment design and the inclusion and exclusion criteria 

used in Supplementary Figure 2. In addition, we give a demographic summary of patients within the 

development set in Supplementary Figure 3 and provide a more in-depth breakdown in Supplementary 

Tables 3 and 4. We also give overview of all datasets used in this study in Supplementary Figure 4. 
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Supplementary Table 3: Breakdown of the age of patients present in the UHCW dataset, 
used for model development. 

Age group  Proportion (%) 

< 6 0.0 

6 to 10 0.1 

11 to 15 0.1 

16 to 20  1.6 

21 to 25 3.1 

26 to 30 4.9 

31 to 35 5.0 

36 to 40  5.9 

41 to 45 6.0 

46 to 50  7.2 

51 to 55 10.6 

56 to 60  10.1 

61 to 65 10.8 

66 to 70  10.5 

71 to 75 12.0 

76 to 80  6.9 

81 to 85 3.9 

86 to 90  1.1 

> 90 0.2 

 

 
Supplementary Table 4: Breakdown of the ethnicity of patients present in the UHCW 
dataset, used for model development. 

Ethnicity Summary  Proportion (%) 

Asian Bangladesh / British Bangladeshi 0.4 

Asian Indian / British Indian 5.6 

Asian Other 0.9 

Asian Pakistani / British Pakistani 0.6 

Black African 0.5 

Black Caribbean 0.3 

Black Other 0.4 

Chinese 0.2 

Mixed Other 0.1 

Mixed White / Black Caribbean 0.1 

Mixed White/ Black African 0.2 

Other 1.4 

White British 76.9 

White Irish  1.4 

White Other 2.2 

Not stated 9.1 
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 6 

 
Supplementary Figure 4: Summary of the data used in this study. Despite using WSIs labelled as either normal or abnormal in our experiments, 

we also show the breakdown of abnormal slides into non-neoplastic and neoplastic categories. 

 

S4.2 Identification of histological objects 
The first step of IGUANA requires the segmentation of various histological objects within the WSI, which 

enables subsequent graph construction and feature extraction. For this, we utilise our recently published 

Cerberus2 model, which performs simultaneous segmentation and classification of nuclei, glands, lumen 

and different tissue regions. Here, the tissue type classification output is used to estimate the lamina 

propria. During training, we use a multi-task learning strategy, which allows the utilisation of multiple 

independent datasets and enables simultaneous prediction with a single network. Therefore, our 

localisation step is computationally efficient and does not require multiple passes through various 

networks. As well as delineating object boundaries, Cerberus determines the category of each nucleus and 

differentiates the surface epithelium from other glands. Cerberus is trained on a large amount of data from 

12 different centres, including more than 535 thousand nuclei, 51 thousand glands and 56 thousand lumen 

annotations. In our previous work, we have shown that this crucial step of initial localisation generalises 

well to unseen examples2.  

 

S4.3 Extraction of clinically interpretable features 
After performing segmentation of various histological objects using Cerberus, we extract a set of clinically 

meaningful features, which were carefully chosen in collaboration with pathologists so that they reflect 

what features are considered during the screening procedure. Our model’s ability to localise glands, lumen 

and nuclei within the tissue allows us to extract interesting gland, intra-gland and inter-gland features that 

are potentially capable of identifying various histological conditions. Specifically, the inter-gland features 

are defined in the non-glandular surrounding area, also known as the lamina propria. To obtain this region, 

we utilise the patch-based tissue type classification output from Cerberus and consider both normal gland 

and tumour patch predictions. We then subtract the gland segmentation output from the prediction map 
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and carry out a series of refinement steps to obtain the final estimation of the lamina propria. We ensure 

that each feature that we consider has a key biological significance. For example, we consider the size and 

morphology of glands, which can be indicative of cancer. For quantifying the morphology, we utilise the 

best alignment metric (BAM)3, which provides a measure of how elliptical an object is, to help capture 

abnormal glands with irregular shapes. We also take into account the number of lumen along with their 

corresponding morphology, which can be suggestive of conditions such as cribriform architecture and 

serrated polyps, respectively. Furthermore, the organisation of epithelial cells and the amount of different 

inflammatory cells within the gland are diagnostically informative. For example, normal glands will have 

epithelial cells organised at the boundary and neutrophils within the gland are indicative of crypt abscesses. 

For measuring the epithelial organisation, we compute the mean and standard deviation of distances of 

epithelial nuclei centroids to their nearest gland boundary. We also utilise the mean and standard deviation 

of inter-epithelial nuclear distances within the gland. Certain inflammatory conditions, such as 

lymphocytic colitis, will have an increased number of inflammatory cells within the lamina propria. 

Therefore, we extract inter-glandular features indicative of the local density of inflammatory cells and 

report the associated cellular composition. Overall, we compute a set of 25 features, which are standardised 

before utilisation within our graph-based machine learning model.  

S4.4 Graph neural networks for computational pathology 
Recently, graph neural networks (GNNs) have become popular in Computational Pathology (CPath)4 due 

to their ability to model a large WSI as an interconnection of nodes representing histologically important 

constructs characterized by node-level features5-7. An added advantage of using GNNs for predictive 

modelling in CPath is their ability to generate an explanation of their output in terms of the node level 

features8-10.  

 

Existing graph neural networks (GNNs) for computational pathology usually consider fixed-size image 

patches at each node11-13 and so fail to incorporate features derived from macrostructures, which can span 

multiple image patches. However, GNNs that use nodes at centres of image patches in WSIs14 may have 

poor interpretability. Instead, nodes can be centred at known histological entities, such as nuclei and glands, 

allowing pathologists to directly reason with a model’s predicted outcome8. Although some methods 

position nodes at known entities, Deep Learning-based features are commonly used15 16, again leading to 

reduced interpretability. Rather than using features derived from image regions, graphs built on top of 

meaningful entities enable the extraction of morphological features. For example, previous methods have 

constructed graphs on top of nuclei (also known as cell graphs), allowing utilisation of interpretable cellular 

features. However, nuclei are the most basic building blocks in the tissue and therefore associated features 

may have limited expressive power, and may fail to model important multi-cellular structures, such as 

glands. Cell graphs can also be very large, where a single tissue sample can contain tens of thousands of 

nuclei, leading to the generation of intractable graph models.  

 

S4.5 Gland-graph neural network for accurate large bowel screening 
To overcome recent limitations in the literature, our proposed method utilises the concept of gland-graphs 

for WSI classification, where the nodes are positioned at glands within the tissue, with associated human-

interpretable features. The features that we utilise are clinically-meaningful and in line with pathologist 

diagnostic pathways, leading to excellent performance and providing a highly-interpretable output. 

 

Thus, once the different histological objects have been identified, each WSI is represented as a gland-

graph. Here, glands are represented as nodes on a 2D plane that are connected by edges if they are within 

a certain distance of each other. Each gland is then associated with a set of 25 features that were previously 

described. Therefore, the overall graph provides a mechanism for representing local features across the 

entire tissue sample. As opposed to surgical resections, which usually contains a large bulk of tissue, 

biopsies can contain many separate tissue segments on the slide. This arrangement has no biological 

significance and, therefore, it would be unreasonable for glands to be connected between neighbouring 

tissue regions. Thus, we also ensure that an edge between any two given glands only exists if they are both 

located within the same tissue segment. 
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Mathematically, a graph is defined as 𝐺 ≡ (𝑉, 𝐸),	where 𝑉 is a set of 𝑁 vertices (or nodes) and 𝐸 is a set 

of edges, where 𝑒!,# ∈ 𝐸 denotes an edge between nodes 𝑖 and 𝑗 ∈ 𝑉. In our case, 𝑉 describes the set of all 

glands in a WSI. Each node typically has an associated 𝑘-dimensional feature vector 𝒙! for 𝑖 ∈ 𝑉. In 

existing methods, an edge 𝑒!,# is constructed if the Euclidean distance between the centroids of nodes 𝑖 and 

𝑗 is less than a certain threshold7 17. The distance between neighbouring node centroids is suitable for 

convex node entities, such as nuclei, because centroids will usually be located within the object. However, 

glands can often be non-convex, especially when they become cancerous. Therefore, we instead define an 

edge 𝑒!,# in our gland-graph if the minimum distance between points on the boundary contours of two 

glands 𝑖 and 𝑗 is less than a certain distance	𝛼. 
 

Upon formation of our gland-graph representation 𝐺 ≡ (𝑉, 𝐸) of a WSI in terms of its nodes  𝑉 and their 

non-directional edges 𝐸, we pass the input through a GNN, which sequentially aggregates features within 

the slide to predict the diagnosis. Each node vector 𝒙! 	represents a gland in terms of the previously 

described features and the GNN aggregates information across nodes using the edges in its computation. 

Note that the number of nodes and edges in each graph can be different depending upon the tissue structure.  

The GNN first applies a linear operation on 𝒙! ∈ ℝ$% to produce another node-level feature representation 

ℎ!& for input into two Principal Neighbourhood Aggregation (PNA) graph convolution18 layers. Each PNA 

layer (𝑙 = 1,2) updates each node representation by aggregating information from its neighbours 𝑗 ∈ ℵ! 
according to the following rule: ℎ!' = 𝛾':ℎ!'(), ⨁ 𝜌':ℎ!'(), ℎ#'()=#∈ℵ!

=, where 𝛾' and 𝜌' are multi-layer 

perceptrons (MLPs) each with their own trainable weights. PNA uses a combination of aggregation 

strategies (denoted by ⊕) based on scaling of mean, standard deviation, minimum and maximum 

aggregation operators over node features. It has been shown recently that using this aggregation approach 

is superior to methods that use a single aggregation step, such as computing the sum as it enables the 

resulting GNN to be a better discriminator of local graph structures18. Outputs of the two PNA layers are 

concatenated and fused with a linear operation to arrive at the final node-level feature embedding 𝒓!. The 

final output 𝒇(𝐺) ∈ ℝ,  is obtained by performing global attention pooling: 

 

𝒇(𝐺) =A exp	(𝜓(𝒓!))
∑ exp	(𝜓(𝒓#))-
#.)

	⊙ 𝜔(𝒓!)
-

!.)

 

 

where 𝜓 and 𝜔 are MLPs, 𝐶 denotes the number of classes predicted by the network, ⊙ denotes element-

wise multiplication and hence the global pooling operator learns to assign a varying weight to different 

gland representations, signifying their relative importance in the final prediction. Finally, a softmax 

function is applied and all the trainable weights in the GNN are optimised in an end-to-end fashion by 

minimising the binary cross entropy loss between the output and the ground-truth labels of training slides.  

 

S4.6 Gland-graph neural network for interpretable diagnosis 
An important aspect of IGUANA is its ability to provide an interpretable and explainable output, which 

can be used to facilitate the diagnostic process and potentially for biomarker discovery. For this, we utilise 

GNNExplainer9, which generates a subset of nodes and features that play a crucial role in the GNN’s 

prediction. To obtain a WSI-level explanation, the local features are averaged within the top ten most 

predictive nodes. This enables analysis over larger cohorts to identify existing sub-populations. To further 

increase model interpretability, we can also visualise the intermediate nuclear, lumen and gland localisation 

results overlaid on top of the original WSI.  

 

To facilitate this, we utilise the graph pruning method GNNExplainer9, which generates a subset of nodes 

and features that play a crucial role in the GNN’s prediction. The intuition here is that unimportant nodes 

and features should have a negligible impact on the performance and can therefore be removed. 

Specifically, GNNExplainer is formulated as an optimisation task that maximises the mutual information 

between a GNN’s prediction and the distribution of possible subgraph structures. Practically, this is 
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achieved by learning a real-valued mask, which gives less weight to unimportant graph components. For 

our approach, we learn a node explanation mask 𝑀/	 ∈ ℝ- and a feature explanation mask 𝑀1 ∈ ℝ-×$%, 

where 𝑁 denotes the number of nodes in each WSI and 25 is the pre-defined number of features. Rather 

than applying a threshold to the learned masks to give a compact subgraph, we visualise the raw mask 

output, which gives an interpretable and explainable output that can be discussed with clinicians. 

Specifically, the learned mask 𝑀/	provides the node explanation which can be overlaid on top of the glands 

in each WSI as a heatmap. Similarly, 𝑀1 can be used to identify the top features for each node/gland and 

the corresponding importance values. To obtain a WSI-level explanation, the local features are averaged 

within the top ten most predictive nodes. To further increase model interpretability, we can also visualise 

the intermediate nuclear, lumen and gland localisation results overlaid on top of the original WSI. 

 

To assess which node explanation method was best, we utilised the metric proposed by Jaume et al.8. The 

intuition behind their proposed metric is that a superior node explanation technique should be able to locate 

top nodes that can better differentiate between classes (in our case normal vs abnormal). We compared 

node explanations given by GNNExplainer, integrated gradients31 and the attention scores given by our 

network and found that GNNExplainer gave the best results in terms of class separability. Based on this 

result, we also used GNNExplainer for obtaining feature explanations. It is important to note that 

GNNExplainer is a post-hoc method, which is why we used attention pooling during optimisation of our 

predictive model.  

 

S4.7 Software, optimisation and reproducibility 
We implemented our framework with the open-source software library PyTorch version 1.1019, PyTorch 

Geometric version 2.1.120 and Python version 3.6 on a workstation equipped with one NVIDIA Tesla V100 

GPU. We utilised scikit-learn version 1.0.221 to perform the comparative experiments using random forest 

and fastcluster version 1.2.622 to perform biclustering analysis. We trained our graph neural network for 

50 epochs using a batch size of 64 and an initial learning rate of 0.005, which was reduced by a factor of 

0.2 after 25 epochs. It should be noted, that despite using a GPU with 32GB RAM, our GNN framework 

incurred a low memory utilisation and therefore different specification GPUs may also be used. The 

interactive demo was developed using the tile server from TIAToolbox23 and Bokeh 2.4.3. No changes 

were made to the AI system or hardware over the course of this study. 

 

Model code, along with a full list of software requirements, is located at 

https://github.com/TissueImageAnalytics/iguana. Code is shared under a copyleft license, whereas model 

weights are for research purposes only and are therefore shared under a non-commercial Creative 

Commons license.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-329512–13.:10 2023;Gut, et al. Graham S



 10 

S5 Extended results 
S5.1 Detailed comparative results 
To assess the performance of our approach, we compare IGUANA with IDaRS24, CLAM25 and a random 

forest classifier using the interpretable glandular features that we extracted (denoted by Gland-RF). Both 

IDaRS and CLAM are recent top-performing deep learning models that use H&E image patches as input 

in a multiple-instance learning (MIL) framework. The Gland-RF model computes the mean and standard 

deviation of all local features within the slide to obtain a fixed-size global feature vector before input to 

the model. For all approaches, we select the best model in terms of its best AUC-ROC on the validation 

set. When fitting the Gland-RF for each fold, we perform a grid search over the hyperparameters and select 

the best models in terms of their performance on the validation set. Despite labels being available, test sets 

were only processed upon conclusion of cross-validation experiments to prevent test data hacking.  

 

Below, we provide detailed numerical results obtained during the study. For IDaRS and CLAM a 

prediction is made per input patch and the results are then aggregated to give a single slide-level score. 

Therefore, we compare the results of IDaRS with different patch aggregation strategies, denoted by Avg, 

Max and AT. Avg and Max compute either the average or the maximum score for all patches in the slide, 

whereas AT computes the average score within the top-scoring patches (patches with scores above the 

slide-level median). Average aggregation is the technique used in the original IDaRS publication. 
 

Supplementary Table 5: Area under the receiver operating characteristic curve (AUC-ROC) for each of the comparative methods. Avg, Max 
and AT refer to the aggregation strategy used in IDaRS.  

 UHCW IMP  

Diagnostics 

ESNE South 

Warwickshire 

Gland-RF 0.9581 ± 0.0011 0.9462 ± 0.0064 0.9391 ± 0.0066 0.9575 ± 0.0013 

CLAM 0.9658 ± 0.0098 0.9701 ± 0.0019 0.9379 ± 0.0080 0.9492 ± 0.0081 

IDaRS (Avg) 0.9738 ± 0.0035 0.9337 ± 0.0147 0.8640 ± 0.0293 0.9267 ± 0.0326 

IDaRS (Max) 0.9721 ± 0.0019 0.9279 ± 0.0288 0.8742 ± 0.0414 0.9085 ± 0.0252 

IDaRS (AT) 0.9757 ± 0.0030 0.9600 ± 0.0073 0.8791 ± 0.0276 0.8791 ± 0.0314 

IGUANA 0.9783 ± 0.0036 0.9789 ± 0.0023 0.9567 ± 0.0155 0.9649 ± 0.0025 

 
Supplementary Table 6: Area under the precision recall curve (AUC-PR) for each of the comparative methods. Avg, Max and AT refer to the 
aggregation strategy used in IDaRS.  

 UHCW IMP  

Diagnostics 

ESNE South 

Warwickshire 

Gland-RF 0.9598 ± 0.0045 0.9870 ± 0.0014 0.9683 ± 0.0028 0.9426 ± 0.0021 

CLAM 0.9678 ± 0.0099 0.9922 ± 0.0006 0.9589 ± 0.0131 0.9357 ± 0.0131 

IDaRS (Avg) 0.9747 ± 0.0013 0.9806 ± 0.0049 0.9168 ± 0.0179 0.9187 ± 0.0281 

IDaRS (Max) 0.9728 ± 0.0019 0.9802 ± 0.0071 0.9205 ± 0.0315 0.9067 ± 0.0195 

IDaRS (AT) 0.9769 ± 0.0011 0.9894 ± 0.0022 0.9288 ± 0.0161 0.9240 ± 0.0266 

IGUANA 0.9798 ± 0.0031 0.9949 ± 0.0006 0.9731 ± 0.0105 0.9466 ± 0.0034 
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Supplementary Table 7: Specificity at 97% sensitivity. The specificity indicates the percentage reduction in normal slides that require review. 
Avg, Max and AT refer to the aggregation strategy used in IDaRS.  

 UHCW IMP  

Diagnostics 

ESNE South 

Warwickshire 

Gland-RF 0.5892 ± 0.0529 0.4356 ± 0.0980 0.2874 ± 0.0800 0.6471 ± 0.0515 

CLAM 0.6407 ± 0.1192 0.7852 ± 0.0247 0.5402 ± 0.0533 0.6078 ± 0.0753 

IDaRS (Avg) 0.7628 ± 0.0751 0.5407 ± 0.0556 0.3161 ± 0.0722 0.4583 ± 0.2041 

IDaRS (Max) 0.7442 ± 0.0358 0.6119 ± 0.0517 0.3621 ± 0.0614 0.2917 ± 0.1482 

IDaRS (AT) 0.7717 ± 0.0581 0.6726 ± 0.0337 0.3621 ± 0.1117 0.5088 ± 0.2258 

IGUANA 0.7865 ± 0.0350	 0.8341 ± 0.0091 0.6552 ± 0.0614 0.7647 ± 0.0489 

 
Supplementary Table 8: Specificity at 98% sensitivity. The specificity indicates the percentage reduction in normal slides that require review. 
Avg, Max and AT refer to the aggregation strategy used in IDaRS.  

 UHCW IMP  

Diagnostics 

ESNE South 

Warwickshire 

Gland-RF 0.4846 ± 0.0197 0.3422 ± 0.0930 0.2184 ± 0.1353 0.6362 ± 0.0607 

CLAM 0.4989 ± 0.1774 0.6711 ± 0.0725 0.4828 ± 0.0244 0.5948 ± 0.0615 

IDaRS (Avg) 0.6725 ± 0.0831 0.4726 ± 0.0588 0.2759 ± 0.0282 0.4035 ± 0.2224 

IDaRS (Max) 0.6506 ± 0.0221 0.5481 ± 0.0437 0.3161 ± 0.0775 0.2697 ± 0.1351 

IDaRS (AT) 0.6758 ± 0.0749 0.5822 ± 0.0604 0.2759 ± 0.0141 0.4276 ± 0.1723 

IGUANA 0.6720 ± 0.0921 0.7378 ± 0.0363 0.5862 ± 0.0488 0.6797 ± 0.0282 

 

Supplementary Table 9: Specificity at 99% sensitivity. The specificity indicates the percentage reduction in normal slides that require review. 
Avg, Max and AT refer to the aggregation strategy used in IDaRS.  

 UHCW IMP  

Diagnostics 

ESNE South 

Warwickshire 

Gland-RF 0.3157 ± 0.00478 0.1822 ± 0.0700 0.0517 ± 0.0141 0.5708 ± 0.0263 

CLAM 0.3262 ± 0.1771 0.5215 ± 0.0927 0.3218 ± 0.1214 0.3987 ± 0.2067 

IDaRS (Avg) 0.4629 ± 0.1144 0.3970 ± 0.0796 0.2529 ± 0.0354 0.2500 ± 0.1604 

IDaRS (Max) 0.4706 ± 0.1137 0.4222 ± 0.0453 0.2241 ± 0.0923 0.0899 ± 0.0594 

IDaRS (AT) 0.4686 ± 0.1350 0.4904 ± 0.0467 0.2356 ± 0.0081 0.2237 ± 0.1472 

IGUANA 0.5409 ± 0.0988 0.5852 ± 0.0789 0.4138 ± 0.1764 0.6471 ± 0.0403 

 

S5.2 Performance across patient subgroups 
We perform an analysis of the test performance on the internal UHCW dataset to analyse potential 

differences in model performance across sex, age, ethnicity and anatomical site of the biopsy. For each 

subgroup-level analysis, we run 100 bootstrap runs to compute average AUC-ROC and its standard 

deviation across sub-categories (Supplementary Table 10). We observe that our method is not biased 

towards any particular subgroup with only minor differences. The effect sizes are quite small for 

differences in performance across sex and ethnicity, but for age the effect is more pronounced. The effect 

sizes are also generally small between anatomical sites, but there is a slightly more noticeable effect for 

the transverse colon. These differences can be due to multiple factors, such as the data used for model 

training and potential variability in disease patterns within subgroups. 
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Supplementary Table 10: Performance across different subgroups present in the UHCW dataset. 

Group Subgroup AUC-ROC 

Sex Male 0.9774 ± 0.0031 

Female 0.9765 ± 0.0033 

Age < 50 0.9644 ±	0.0047 

> 50 0.9819 ± 0.0024 

Ethnicity White 0.9771 ± 0.0026 

Black & minority ethnic backgrounds 0.9790 ± 0.0082 

Anatomical site Ascending 0.9687 ± 0.0071 

Descending 0.9740 ± 0.0059 

Transverse 0.9822 ± 0.0053 

Sigmoid 0.9772 ± 0.0045 

Rectum 0.9723 ± 0.0060 

Caecum  0.9728 ± 0.0078 
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Supplementary Figure 5: Results of IGUANA across the four cohorts used in our experiments compared to IDaRS with different aggregation 
strategies. Here, AT corresponds to the average of top tiles, where top tiles are those with a score above the median. We display the ROC and 
PR curves along with the respective AUC scores for each method. We also display the specificities obtained at sensitivity cut-offs of 0.97, 
0.98 and 0.99. The shaded areas in the curves and the error bars in the bar plots show 1 standard deviation from the results.   
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S5.3 Reduction of pathologist workload 
 

 
Supplementary Figure 6: Impact of the automatic colon biopsy screening tool on clinical practice. For each dataset we show the 

proportion of slides that need to be reviewed to ensure a specific sensitivity. Our target sensitivity is 0.99. We also show the proportion 
of abnormal slides with a vertical dashed line to indicate the minimum number of slides that need to be reviewed to ensure high 
sensitivity. 
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Lamina propria neutrophil proportion, LPEoP: Lamina propria eosinophil proportion, LPCP: Lamina propria connective proportion,  ICD: 
Inflammatory cell density. 

 
Supplementary Figure 8: False negative analysis. On the left we show the class counts along with the corresponding number of false negatives. 
On the right, we show the false positive rate per class. For this figure, we don’t consider sub-conditions with minimal examples. 

 

S5.5 Model calibration 
To assess whether the model output can be interpreted as a probability and hence be used as a measure of 

confidence to guide clinicians, we investigated model calibration. For this, we compare the model output 

with the true probability, which is calculated by measuring the proportion of correctly classified examples 

within a certain probability range.  

 

In Supplementary Figure 9, we display model calibration plots for our approach compared to IDaRS, 

CLAM and Gland-RF on the UHCW dataset. For a perfectly calibrated model, we would expect the plot 

to lie across the dashed diagonal line, indicating that the model output is equal to the true probability. We 

observe that both IGUANA and CLAM are fairly well calibrated and so the model output can be used as a 

proxy to the model confidence. However, after inspection IDaRS is poorly calibrated and therefore outputs 

should be interpreted with caution. This is due to the aggregation strategy used, where patch-level scores 

are averaged to give the output.  

 

 

a b
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Supplementary Figure 9: Calibration plot of our approach compared to IDaRS, CLAM and a gland-based random forest. Curves closer 
to the black dashed line indicate better calibration, which means that model outputs are closely associated with the probability of a 
prediction being correct. Hence calibrated model outputs can be used as a measure of confidence to better inform decisions. 
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Supplementary Table 11: Description of all 25 features used in our experiments, along with various conditions that they may 
be able to detect. LP denotes lamina propria. 

Feature Name Feature Description Histological 

Description 

Main Conditions 

Modelled 

Gland size Size of gland (number of pixels at 

0.5 microns/pixel) 

Gland enlargement Neoplasia, dysplasia, 

adenomatous polyps 

Gland morphology How far gland is from being 

elliptical – BAM distance38 

Gland distortion,  

gland branching 

Neoplasia, dysplasia. 

adenomatous polyps 

Gland density Distance to nearest gland Gland dropout Inflammation 

Lumen size Size of lumen (number of pixels 

at 0.5 microns/pixel) 

Lumen dilation Neoplasia, dysplasia, 

hyperplastic polyps 

Lumen morphology How far lumen is from being 

elliptical – BAM distance38 

Lumen serrations Hyperplastic polyps 

Lumen number Lumen count within gland Cribriform 
architecture 

Neoplasia 

Lumen composition Ratio of lumen to gland area Gland dilation Hyperplasia 

Gland epithelial size Average size of epithelial nuclei 

within a gland 

Epithelial cell atypia Neoplasia, dysplasia, 

adenomatous polyps 

Gland epithelial size 

variation 

Standard deviation of epithelial 

nuclei size within a gland 

Epithelial cell atypia Neoplasia, dysplasia, 

adenomatous polyps 

Gland epithelial 

organisation 

Average distance of intra-gland 

epithelial nuclei to nearest gland 

boundary 

Stratification of 

epithelial cells 

Neoplasia, dysplasia, 

adenomatous polyps 

Gland epithelial 

organisation variation 

Standard deviation of intra-gland 

epithelial nuclei distances to 

nearest gland boundary 

Uneven stratification 

of epithelial cells 

Neoplasia, dysplasia, 

adenomatous polyps 

Gland epithelial 

clustering 

Average distance between intra-

gland epithelial nuclei 

Epithelial cells tightly 

packed 

Neoplasia, dysplasia, 

adenomatous polyps 

Gland epithelial 

clustering variation 

Standard deviation of intra-gland 

epithelial nuclei distances to 

nearest gland boundary 

Epithelial cells 

unevenly spaced 

Neoplasia, dysplasia, 

adenomatous polyps 

Lumen epithelial 

organisation 

Average distance of intra-gland 

epithelial nuclei to nearest lumen 
boundary 

Gland dilation, 

cribriform 
architecture 

Neoplasia, dysplasia, 

hyperplastic polyps 

Lumen epithelial 

organisation variation 

Standard deviation of intra-gland 

epithelial nuclei distances to 

nearest lumen boundary 

Lumen serrations, 

cribriform 

architecture 

Neoplasia, dysplasia, 

hyperplastic polyps 

Gland epithelial density Number of intra-gland epithelial 

nuclei, normalised by the gland 

size 

Solid sheets of 

epithelial cells 

Neoplasia, dysplasia, 

adenomatous polyps 

Gland lymphocyte 

density 

Number of intra-gland 

lymphocytes, normalised by the 

gland size 

Gland lymphocyte 

infiltration 

Inflammation 

Gland neutrophil 

density 

Number of intra-gland 

neutrophils, normalised by the 

gland size 

Gland neutrophil 

infiltration (crypt 

abscess) 

Inflammation 

Gland eosinophil 

density 

Number of intra-gland 

eosinophils, normalised by the 

gland size 

Gland eosinophil 

infiltration 

Inflammation 

LP lymphocyte 

proportion 

Proportion of lymphocytes within 

nearest 220 nuclei to gland 

Lymphocytic colitis Inflammation 

LP plasma cell 

proportion 

Proportion of plasma cells within 

nearest 220 nuclei to gland 

Colitis Inflammation 

LP neutrophil 

proportion 

Proportion of neutrophils within 

nearest 220 nuclei to gland 

Acute inflammation Inflammation 

LP eosinophil 

proportion 

Proportion of eosinophils within 

nearest 220 nuclei to gland 

Eosinophilic colitis Inflammation 

LP connective tissue 

cell proportion 

Proportion of connective tissue 

cells within nearest 220 nuclei to 

gland 

Desmoplasia Inflammation 

LP inflammatory cell 

density 

Mean distance of nearest 250 

inflammatory nuclei to gland 

General inflammation Inflammation, 

hyperplastic polyps 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-329512–13.:10 2023;Gut, et al. Graham S



 20 

S7 Extended discussion 
S7.1 Application of the model to surgical resections and other tissues 
Despite the screening of endoscopic large bowel biopsies being a focus of this study, the proposed approach 

could be applied to resection samples with minimal modification. Our method may be especially powerful 

in this case because each tissue segment within the slide is typically larger, allowing greater spatial context 

to be explored. Two potential areas of interest using resection samples include the prediction of genetic 

alterations26 and survival analysis27 28. In these cases, histological biomarkers are less well known, as 

compared to those used for routine screening tasks. Therefore, our approach might be used to aid biomarker 

discovery and help toward further understanding of which morphological patterns are associated with 

certain genetic alterations and clinical outcomes.  

 

In principle, our graph model can target other histological entities as nodes, such as blood vessels, but we 

chose to focus on epithelial structures in case of large bowel tissue as most large bowel abnormalities are 

associated with epithelial structures. Our algorithm will naturally translate to other tissues with tubular 

structures, such as endometrial and breast tissue. 

 

S7.2 Using the application is clinical practice 
As well as performing a thorough validation, we will need to ensure that the user interface seamlessly 

integrates with existing pathologist workflows. Our current interactive solution is a proof of concept, which 

will inevitably undergo numerous rounds of refinement before it is deployed. In particular, the optimal 

way to present the top features and overlay to the pathologists is yet to be determined. For this, we envisage 

a future pathologist user study to collect extensive feedback on the tool. 
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