Possible role of REG Iα protein in ulcerative colitis and colitic cancer

Akira Sekikawa,* Hirokazu Fukui,* Shigehiko Fujii,*,§ Apichart Nanakin,* Naoki Kanda,* Yoshito Uenoyama,* Tateo Sawabu,* Hiroshi Hisatsune,* Toshihiro Kusaka,* Satoru Ueno,* Hiroshi Nakase,* Hiroshi Seno,* Takahiro Fujimori,§ and Tsutomu Chiba*

*Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto; and §Department of Pathology, Dokkyo University School of Medicine, Tochigi, Japan.

Short title: REG Iα in ulcerative colitis and colitic cancer.

Grant Support: This work was supported in part by Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Osaka Cancer Research Fundation.

Keywords: REG, anti-apoptosis, cytokine, proliferation, ulcerative colitis.

Abbreviations: IFN, interferon; TNF, tumor necrosis factor; IL, interleukin; CINC, cytokine-induced neutrophil chemoattractant; UC, ulcerative colitis; TUNEL, TdT-mediated dUTP nick end-labeling; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; WST-8, 2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt

Correspondence:
Hirokazu Fukui, M.D., Ph.D.
Department of Gastroenterology and Hepatology,
Kyoto University Graduate School of Medicine,
54, Kawaramachi-shogoin, Sakyoku, Kyoto 606-8507, Japan.
E-mail: hfukui@kuhp.kyoto-u.ac.jp
ABSTRACT

Background and Aims: Although regenerating gene (REG) Iα protein may be involved in the inflammation and carcinogenesis in the gastrointestinal tract, its pathophysiological role in ulcerative colitis (UC) and the resulting colitic cancer remains unclear. We investigated expression of the REG Iα gene and its protein in UC and colitic cancer tissues and examined whether cytokines are responsible for REG Iα gene expression and whether REG Iα protein has a trophic and/or an anti-apoptotic effect on colon cancer cells.

Methods: The expression of REG Iα mRNA and its gene product in UC tissues was analyzed by real time RT-PCR and immunohistochemistry, respectively. The effects of cytokines on REG Iα promoter activity were examined in LoVo cells by luciferase reporter assay. The effects of REG Iα protein on growth and H2O2-induced apoptosis were examined in LoVo cells by MTT and TUNEL assays, respectively.

Results: REG Iα protein was strongly expressed in inflamed epithelium and in dysplasias and cancerous lesions in UC tissues. The level of REG Iα mRNA expression in UC tissues correlated significantly with severity of inflammation and disease duration. REG Iα promoter activity was enhanced by stimulation with IFN-γ or IL-6. REG Iα protein promoted cell growth and conferred resistance to H2O2-induced apoptosis in LoVo cells. REG Iα protein promoted Akt phosphorylation and enhanced Bcl-xL and Bcl-2 expression in LoVo cells.

Conclusions: The REG Iα gene is inducible by cytokines and its gene product may function as a mitogenic and/or an anti-apoptotic factor in the UC-colitic cancer sequence.
INTRODUCTION

The *regenerating gene* (*Reg*) was originally isolated from a complementary DNA (cDNA) library derived from regenerating rat pancreatic islets, and its human homologue was named *REG Iα*.\(^1\) *REG Iα* protein is predominantly expressed in the normal pancreas, and at lower levels in the stomach and colon, implying physiological roles for *REG Iα* in these organs.\(^2,3\) Indeed, recent studies have reported that *REG Iα* is overexpressed during pancreatitis,\(^4,5\) *Helicobacter pylori*-induced gastritis,\(^6\) and in the gastric ulcer lesions,\(^7,8\) suggesting that *REG Iα* is importantly involved in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, it is interesting that *REG Iα* gene was identified as a distinctly overexpressed gene in inflammatory bowel disease (IBD) by microarray analyses.\(^9,10\) However, it is not clear how *REG Iα* gene expression is enhanced in such inflammatory conditions.

Although we and others have previously suggested that Reg protein has a trophic effect on mammalian epithelial cells,\(^11,12,13\) its biological functions are still unclear. Recently, *REG Iα* is suggested to be involved not only in the inflammatory diseases but also in the carcinogenesis in various gastroenterological tissues such as stomach,\(^14,15\) colon,\(^16\) bile duct,\(^17\) and pancreas\(^3,\) however, its involvement in the ulcerative colitis (UC)-associated colorectal cancer (colitic cancer) is not known. Since *REG Iα* gene is likely overexpressed in UC,\(^9,10\) *REG Iα* may play important roles as a trophic or other factors on the development of colitic cancers. In the present study, in order to elucidate roles for *REG Iα* in UC-colitic cancer sequence, we investigated the relationship between *REG Iα* expression and clinicopathological factors in patients with UC and colitic cancer. Furthermore, by *in vitro* studies, we examined whether cytokines enhance *REG Iα* gene expression and whether *REG Iα* has a trophic and/or an anti-apoptotic effect on colon cancer cells.
MATERIALS AND METHODS

Tissue Specimens and Histological Examination

Colon biopsy specimens were obtained by endoscopy from 24 patients with UC (15 men and 9 women; mean age 45.6 years, range 19-79 years; mean disease duration 6.4 years, range 0-19 years), four patients with Crohn’s disease (2 men and 2 women; mean age 36.0 years, range 26-50 years; mean disease duration 5.5 years, range 0-15 years), eight non-IBD patients with proctitis (6 men and 2 women; age range 40-79 years), 10 patients with sporadic colon adenoma (7 men and 3 women; age range 55-85 years) and five normal controls (5 men; age range 33-38 years) at Kyoto University Graduate School of Medicine. The tissue specimens were used for real time RT-PCR and histological analyses. This work was done with the approval of the Review Board of Kyoto University Hospital, and informed consent was obtained from all patients.

A total of seven colitic cancer lesions (location: 5 rectum, 1 sigmoid, 1 descending; histology: 4 well-differentiated adenocarcinomas, 3 mucinous adenocarcinomas) were obtained from surgically resected specimens from four UC patients (2 men and 2 women; age range 44-58 years; disease duration 11-25 years), and eight sporadic colon cancer lesions (location: 3 rectum, 2 sigmoid, 1 descending, 1 ascending, 1 cecum; 2 well-differentiated adenocarcinomas, 6 moderately-differentiated adenocarcinomas) were obtained from eight non-UC patients (5 men and 3 women; age range 65-79) at Dokkyo University School of Medicine. The colitic cancer tissue specimens were fixed in 10% formalin solution, embedded in paraffin, and subjected to histological analyses. The sporadic colon cancer tissue specimens were used for real time RT-PCR and histological analyses. This work was done with the approval of the Dokkyo University Surgical Pathology Committee, and informed consent was obtained from all patients.

The diagnosis of UC was based on established endoscopic and histological criteria, and the degree of inflammation was evaluated according to Matts’ grade throughout the experiments.

Immunohistochemical Staining

Immunohistochemical stainings for proliferating cell nuclear antigen (PCNA) and REG Iα protein were performed as described previously using anti-human PCNA antibody (PC10; DAKO JAPAN, Kyoto, Japan; dilution, 1:1000) and anti-human REG Iα antibody (dilution, 1:2000). A cancerous specimen was considered positive for REG Iα when more than 20% of the tumor cells were positively stained.

Real Time RT-PCR

Total RNA was isolated from colonic biopsy samples and seven human colon cancer cell lines (Caco-2, COLO 205, DLD-1, HT-29, LoVo, SW403, and WiDr) with Trizol reagent (Gibco BRL, Rockville, MD). Five µg of total RNA was reverse-transcribed using oligo-dT primer (Applied Biosystems, Branchburg, NJ) and RT product was amplified by PCR as previously described. TaqMan quantitative real time PCR was performed with the ABI PRISM 7700 Sequence Detection System (Applied Biosystems, Foster City, CA). The following set of primers and probe for human REG Iα was prepared: human REG Iα, 5’-CTAGAGGCAACTGGAAAATACATGTCT-3’ (sense), 5’-GTTGGAGAGATGGTCCGGTTT-3’ (antisense), and 5’-FAM-AACGGAGTCAAAAATT (probe). In addition, a set of primers and probe for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was synthesized by Applied Biosystems (Foster City, CA).
Each amplification consisted of a 50 µl reaction mixture with 50 ng of cDNA, 250 nM of REG Iα probe (or 100 nM of GAPDH probe), 900 nM of REG Iα primer (or 200 nM of GAPDH primer), and 1×TaqMan universal PCR master mixture (Applied Biosystems, Branchburg, NJ). The PCR cycling conditions were 50°C for 2 min, 95°C for 10 min, followed by 45 cycles at 95°C for 15 sec and 60°C for 60 sec. A template-free negative control was included in all amplifications, and each assay was performed in duplicate. The intensity of the fluorescent dye was determined, and the expression levels of REG Iα mRNA were normalized to GAPDH mRNA expression levels.

Cell Culture and Treatment
Colon cancer cell lines LoVo and SW403 were routinely maintained in RPMI1640 medium (Invitrogen, Grand Island, NY, USA) with 10% fetal bovine serum (Invitrogen) in a humidified incubator at 37°C with an atmosphere of 5% CO₂. These cell lines were used for assessment of REG Iα promoter activity by IFN-γ (Roche, Mannheim, Germany), TNF-α (Roche), IL-1β (Roche), IL-5 (Pepro Tech Inc, Rocky Hill, NJ, USA), IL-6 (Roche), IL-8 (Roche), and IL-13 (Pepro Tech Inc). In addition, LoVo cells were used for the assays of cell growth and apoptosis.

Luciferase Activity Assay and Transfection
The human REG Iα promoter from −1195 to +78 was generated from human stomach DNA by PCR using following set of primers containing Mlu I and Bgl II restriction site, respectively: 5’-CTTACGCGTGAAATTCGTAAGTGA-3’ and 5’-CCCGAAGATTTAGATCTACAGTGC-3’. The cloned nucleotides of the promoter were inserted into the position between Mlu I and Bgl II restriction site, upstream of the luciferase gene in the pGL3-Basic vector (Promega, Madison, WI), and the construct was named hREG Iα-Luc.

LoVo and SW403 cells (2×10⁴) were seeded 24 hours before transfection in 12-well plates (IWAKI, Funabashi, Japan). Cells were cotransfected with 700 ng of a hREG Iα-Luc construct and 7 ng of Renilla luciferase plasmid pRL-TK (as a control of transfection efficiency) in the OptiMem medium (GIBCO, Grand Island, NY) using FuGENE 6 transfection reagent (Roche, Indianapolis, IN) according to the manufacturer’s protocol. Forty-eight hours later, cells were stimulated by IFN-γ, TNF-α, IL-1β, IL-5, IL-6, IL-8, and IL-13 for 3, 6, 12, and 24 hours.

Luciferase assays were performed using the Dual Luciferase Reporter Assay system (Promega, Madison, WI, USA) according to manufacturer’s protocol. Firefly luciferase and Renilla luciferase activities were assayed by luminometer (Lumat LB 9506; Berthold, Germany). Results obtained were normalized for Renilla luciferase activity and expressed as fold of activity of untreated cell group at 0 hour time point.

Transfection and Expression of the Human REG Iα cDNA
The full-length of human REG Iα cDNA was inserted into the pIRES2-EGFP vector containing cytomegalovirus promoter driving enhanced green fluorescent protein gene (EGFP) (Clontech, Palo Alto, CA). After cloning and verifying the nucleotides of the human REG Iα cDNA by sequencing, the construct was named pIRES2-hREG Iα, and pIRES2-EGFP vector without insert was used as control.

The plasmids were stably transfected into LoVo cells using FuGENE 6 transfection reagent as described above. To select cells with stable expression of the pIRES2-hREG Iα
and pIRES2-EGFP, the cells were cultured for over 3-4 weeks in the medium containing G418 (GIBCO; 400 µg/mL), and surviving colonies were pooled.

Preparation of Conditioned Medium

To prepare conditioned medium, we cultured human embryonic kidney (HEK) 293T cells in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. According to the manufacturer’s protocol, the cells were transfected with 10 µg of pIRES2-hREG Iα or control plasmid using FuGENE 6 transfection reagent. The medium was replaced by serum-free RPMI1640 medium after 48-hour incubation. The conditioned medium was then collected and stored frozen as a source of recombinant REG Iα protein.

Cell Growth Assay

Cell growth was assessed by Cell Counting Kit-8 (Dojindo, Kumamoto, Japan). LoVo cells (5×10³), stably transfected with pIRES2-hREG Iα (LoVo-REG Iα cells) or pIRES2-EGFP (LoVo-EGFP) vector, were plated in 96-well microplates. The cells were incubated in serum-free RPMI1640 medium for 24, 48, and 72 hours. After the addition of 10 µl of the Cell Counting Kit-8 reagent followed by three-hour incubation, the plates were read at 450 nm in a spectrophotometer (Molecular Devices Co., Sunnyvale, CA). To assess the effect of REG Iα in the medium, we added anti-REG Iα antibody (50 µg/ml) to serum-free RPMI1640 medium, and the cells incubated for 72 hours were also evaluated in the same procedure.

Cell growth assay was also performed to examine the trophic effect of REG Iα protein on colon cancer cells. Briefly, LoVo cells (5×10³) were cultured in 96-well microplates for 24 hours. Then, the medium was changed to conditioned medium containing human-recombinant REG Iα or control medium, and the cells were incubated for 24, 48, and 72 hours. To assess the effect of REG Iα in the medium, we added anti-REG Iα antibody to control or REG Iα-containing medium, and the cells incubated for 72 hours were also evaluated in the same procedure.

TUNEL Assay

LoVo-REG Iα cells (1×10⁴) and control LoVo-EGFP cells were cultured in 4-well culture slides (FALCON, Bedford, MA). Twenty-four hours later, the cells were incubated for 2 h with different concentrations (0-10 mmol/L) of H₂O₂ in serum-free medium. Thereafter, cells were incubated in the routine medium for 24 hours. After wash with PBS, the slides were fixed with 10% buffered formalin for 15 min and then stained by In Situ Cell Death Detection Kit (Roche, Indianapolis, IN) according to supplied protocol. TUNEL index was calculated as the percentage of positive cells. To assess the effect of REG Iα in the medium, we added anti-REG Iα antibody (50 µg/ml) to routine medium immediately after the treatment with H₂O₂ (5 mmol/L).

TUNEL assay was also performed to examine the anti-apoptotic effect of REG Iα protein on colon cancer cells. LoVo cells (5×10³) were cultured in 4-well culture slides for 24 hours, followed by 24 h-incubation with conditioned medium containing human-recombinant REG Iα or control medium. Then, the cells were incubated for another 2 h with different concentrations (0-10 mmol/L) of H₂O₂, and subjected to TUNEL assay 24 h later. To assess the effect of REG Iα in the medium, we added anti-REG Iα antibody to control or REG Iα-containing medium immediately after the treatment with H₂O₂ (5 mmol/L).
Detection of Phosphorylated, Non-phosphorylated Akt, and Bcl Family Proteins

LoVo cells were cultured in 10-cm dishes for 24 h. After washing with PBS, the medium was changed to conditioned medium containing human-recombinant REG Iα or control medium, and the cells were incubated for another 12 h. The cells were then mixed with lysis buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM EDTA, 1% Nonidet P-40 (NP-40), 50 mM NaF, and 1× proteinase inhibitor (Complete Mini; Roche, Mannheim, Germany). Ten µg of protein extract was fractionated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis. After transfer to a polyvinylidene difluoride membrane, Western blots were performed using anti-Akt, anti-phospho-specific Akt (Ser473) (New England Biolabs, Beverly, MA), anti-Bcl-2, anti-Bcl-xL, anti-Mcl-1 (BD Sciences, San Jose, CA), and anti-β-actin antibodies (Sigma Chemical Co., St Louis, MO) as previously reported.20

Statistical Analysis

All values are expressed as the mean ± SEM. Statistical differences between two groups were assessed by the unpaired two-tailed t test, or by the Mann-Whitney U test when data were not parametric. The relationship between REG Iα mRNA level and disease duration was assessed by linear regression analysis. A P value of less than 0.05 was considered to indicate statistical significance.
RESULTS

Expression of REG Iα mRNA in Normal Colonic and Ulcerative Colitis Mucosa

REG Iα mRNA expression was detectable by real time RT-PCR in all colonic mucosa from both control and UC patients. As shown in Figure 1A, the level of REG Iα mRNA expression was significantly greater in UC tissues than in normal colonic tissues. Furthermore, the levels of REG Iα mRNA expression in Crohn’s colitis and proctitis tissues were also significantly greater than that in normal colonic tissues. We next analyzed the relationship between REG Iα mRNA expression and several clinicopathological factors, and found that REG Iα mRNA expression was significantly enhanced as the severity of endoscopic or histological features increased (Figure 1B and C). Moreover, REG Iα mRNA expression in UC patients with long duration (≥ 10 years) was significantly greater than those with short duration (< 10 years) (Figure 1D). We further subdivided the patients by both disease duration and histological findings and analyzed REG Iα mRNA expression in each group. As shown in Figure 1E, in high-Matts score group REG Iα gene expression level in patients with long duration was significantly greater than patients with short duration. In addition, in low-Matts score group REG Iα gene expression level in patients with long duration was also greater than patients with short duration although there was no significant difference (P = 0.16). REG Iα mRNA expression in UC tissues was significantly correlated with disease duration (Figure 1F) but not with age or sex (data not shown).

Expression of REG Iα Protein and PCNA in Normal Colonic and Ulcerative Colitis Mucosa, and in Dysplasia and Colitic Cancer

In normal colonic mucosa, REG Iα immunoreactivity was detected only in a few epithelial cells in the basal portion of crypts (Figure 2A). Colonic epithelial cells positive for PCNA were also observed in the basal portion of crypts (Figure 2B).

In UC mucosa, both the number of REG Iα-positive cells in crypts and the intensity of REG Iα immunoreactivity were increased. Strongly REG Iα-positive cells were mainly observed in the lower part of the colonic mucosa (Figure 2C). The number of PCNA-positive cells in crypts was also increased, and the distribution of such cells was similar to that of REG Iα-positive cells (Figure 2D).

REG Iα immunoreactivity was detected in the cytoplasm of not only dysplastic but also colitic cancer cells (Figure 2E and G). REG Iα expression was detected in all seven of the colitic cancer lesions, originating from four patients, examined. PCNA was also strongly expressed in both dysplastic and cancerous cells in all the colitic cancer tissues examined (Figure 2F and H).

Expression of REG Iα mRNA in Colon Cancer Cell Lines, Sporadic Colon Adenomas, and Cancers

Expression of REG Iα mRNA expression was detected in all seven colon cancer cell lines examined using the RT-PCR method (Figure 3). Then, we examined REG Iα mRNA expression in colon adenomas, cancers, and their neighboring normal colon mucosa by real time RT-PCR. The REG Iα mRNA expression level in colon adenomas (n = 10; 159 ± 51) was significantly higher than that in normal colon mucosa (n = 10; 1.0 ± 0.2) (P < 0.05). Moreover, the REG Iα mRNA expression level in colon cancers (n = 8; 1260 ± 710) was significantly higher than that in normal colon mucosa (P < 0.05).
Effects of Cytokines on REG Iα Promoter Activity in Colon Cancer Cell Lines

The effect of several cytokines on human REG Iα promoter activity was analyzed by transient expression assays in two human colon cancer cell lines (Figure 4). In both LoVo and SW403 cells transfected with the hREG Iα-Luc construct, luciferase activity was significantly elevated at 3 h after stimulation with IFN-γ (100 and 500 U/ml) and this elevation was sustained for 24 h. Similarly, human REG Iα promoter activity was enhanced in both cell lines at 3 h after treatment with IL-6 (100 and 1000 IU/ml) and again the elevation was sustained for 24 h. In contrast, treatment with TNF-α, IL-1β, IL-5, IL-8, or IL-13 did not affect luciferase activity in the two cell lines.

Effect of REG Iα on Cell Growth in LoVo Cells

LoVo cells transfected with pIRES2-hREG Iα (LoVo-REG Iα) showed significantly higher WST-8 cleavage levels than did LoVo cells transfected with pIRES2-EGFP (LoVo-EGFP; control) at each time point (24-72 hours) of incubation (Figure 5A). Increased WST-8 cleavage in the LoVo-REG Iα cell group was suppressed almost to the control level by addition of anti-REG Iα antibody (Figure 5B), suggesting that enhanced cell growth in LoVo-REG Iα cells is caused by secreted REG Iα protein.

REG Iα conditioned medium significantly increased WST-8 cleavage in LoVo cells at 24-72 hours incubation time (Figure 5D). As shown in Figure 5E, the increased WST-8 cleavage in REG Iα-treated LoVo cells was abolished by the concomitant administration of anti-REG Iα antibody.

Anti-Apoptotic Effect of REG Iα in LoVo Cells

The LoVo-REG Iα cell group showed a significantly lower TUNEL positivity than the LoVo-EGFP group when they were treated with H2O2 at concentrations of 2.5-10 mM, suggesting that REG Iα-overexpressing cells are more resistant to apoptosis induced by H2O2 (Figure 6A). The decreased TUNEL positivity in the LoVo-REG Iα cell group was significantly reversed by treatment with anti-REG Iα antibody (Figure 6B), suggesting that secreted REG Iα protein confers an anti-apoptotic effect on colon cancer cells.

LoVo cells treated with REG Iα conditioned medium showed a significantly lower TUNEL positivity than did cells treated with control medium when they were exposed to H2O2 at concentrations of 2.5-10 mM (Figure 6C). The decreased TUNEL positivity in REG Iα-treated LoVo cells was significantly reversed by the concomitant administration of anti-REG Iα antibody (Figure 6D).

The treatment with REG Iα-conditioned medium enhanced the phosphorylation of Akt in LoVo cells (Figure 7A). Moreover, REG Iα-conditioned medium clearly increased Bcl-2 and Bcl-xL expression in LoVo cells, whereas REG Iα did not affect Mcl-1 expression (Figure 7B).
DISCUSSION

In the present study, we have shown that REG I\(\alpha\) is expressed in only a few small cells in the mid to basal portion of a colonic crypt, where putative stem cells reside and continuous cell renewal is occurring.\(^{21,22}\) Interestingly, in the gastric epithelium, REG I\(\alpha\) is expressed not only in enterochromaffin-like and chief cells but also in immature small cells in the proliferating neck zone of gastric glands.\(^{14,23}\) Since REG I\(\alpha\) protein is indeed mitogenic to gastrointestinal epithelial cells,\(^{11}\) REG I\(\alpha\) produced in the proliferative zone may play a role in the self-renewal of gastrointestinal epithelium under certain physiological condition.

It is noteworthy that several investigators have identified REG I\(\alpha\) as one of the most abundantly expressed genes in the colonic mucosa of patients with UC by gene chip analyses,\(^{9,10}\) even though only a few REG I\(\alpha\)-positive cells are present in normal colonic mucosa. Confirming those data, we could demonstrate in this study that levels of both REG I\(\alpha\) gene and its protein are significantly increased in UC mucosa. Furthermore, we also showed that enhancement of REG I\(\alpha\) gene expression in the colonic mucosa is correlated with severity of inflammation in UC as assessed both endoscopically and histologically. These data strongly suggest that REG I\(\alpha\) is importantly involved in the inflammatory process of UC.

What factors could be responsible for the increase in REG I\(\alpha\) expression in UC mucosa? Since various cytokines play important roles in the inflammation of UC, we examined in this study whether those cytokines enhance transcription of the REG I\(\alpha\) gene in vitro, and found that both IFN-\(\gamma\) and IL-6 significantly stimulated REG I\(\alpha\) promoter activity in colon cancer cells. In contrast, none of IL-8, IL-1\(\beta\), TNF-\(\alpha\), IL-5 or IL-13 could enhance REG I\(\alpha\) promoter activity in colon cancer cells. Previous studies have shown that, in addition to IFN-\(\gamma\) and IL-6, TNF-\(\alpha\) and CINC-2\(\beta\), a mouse homolog of IL-8, are able to enhance REG I\(\alpha\) gene expression in rat pancreatic acinar cells\(^{19,24}\) and in rat gastric mucosa in vivo.\(^{25}\) The discrepancies between those results and our present data may be due to the use of different species, cell types, or experimental conditions. It is well known that expression of both IL-6 and IFN-\(\gamma\) is prominently increased in UC mucosa.\(^{26,27,28}\) Thus, although we did not measure levels of those cytokines in this study, it appears reasonable to suppose that increased levels of IL-6 and IFN-\(\gamma\) in the mucosa of UC are at least in part responsible for the enhanced expression of the REG I\(\alpha\) gene and its product. It may be noted that although UC is known as a Th2-dominant disease,\(^{29,30}\) none of Th2 cytokines tested in this study had any effect on REG I\(\alpha\) promoter activity. These data may suggest that the enhanced REG I\(\alpha\) expression in UC mucosa is not a Th2-specific phenomenon but rather a reflection of general inflammatory condition where IL-6 and IFN-\(\gamma\) expression are elevated.

It is important to clarify whether REG I\(\alpha\) is involved in the carcinogenesis of UC-associated colorectal cancer. Interestingly, we found in this study that REG I\(\alpha\) is expressed not only in the epithelial cells of UC mucosa but also in the epithelial cells of dysplastic lesions and in colitic cancer cells. Moreover we have clearly shown that REG I\(\alpha\) expression is significantly increased in patients with long-standing colitis that is high risk of colitic cancer.\(^{31,32}\) These findings strongly suggest an involvement of REG I\(\alpha\) in UC-colitic cancer sequence. During ulcerative colitis, the colonic epithelial cells are continuously injured by inflammation, that may induce sustained regeneration of epithelial cells. In the present study, we have shown that REG I\(\alpha\) protein has not only growth promoting but also anti-
apoptotic action on colonic cells, and moreover that REG Iα protein exerts its anti-apoptotic effect at least in part by activating Akt signaling and enhancing Bcl-xL and Bcl-2 expression. Thus, REG Iα protein induced by ulcerative colitis may play roles in protecting the colonic epithelial cells from apoptosis. Conversely, however, since REG Iα expression is sustained at high levels in chronic ulcerative colitis, its anti-apoptotic action as well as its growth promoting effect may contribute to the development of colitic cancer from UC tissues. Of note, we also found that the distribution of REG Iα-positive cells was similar to that of PCNA-positive cells in colitic cancer tissues as well as in dysplastic and colitis mucosa. Therefore, REG Iα produced in epithelial cells as well as in cancer cells may exert a direct action on epithelial cells in colitis, and also on cancer cells themselves. In support of this view, addition of anti-REG Iα antibody to the incubation medium abolished not only the growth-promoting effect of REG Iα conditioned medium but also the enhanced growth of REG Iα-transfected cells. Similarly, anti-REG Iα antibody blocked the anti-apoptotic effect of REG Iα conditioned medium and abrogated the reduction of apoptosis in REG Iα-transfected cells. These data strongly suggest that REG Iα secreted from epithelial cells or cancer cells exerts growth-promoting and anti-apoptotic actions in a paracrine or autocrine fashion. On the other hand, it may be noted in this study that colitic cancers develop in only limited number of patients with UC, although REG Iα is ubiquitously expressed in the inflamed UC mucosa. However, it may be emphasized that carcinogenesis is a complicated event in which many factors are involved. Thus, REG Iα may play roles in UC-colitic cancer sequence as one of the growth promoting as well as anti-apoptotic factors, and function in colitic cancer development not as a tumor initiator but as a tumor promoter.

In the present study, we have shown that REG Iα gene expression is increased not only in UC mucosa and colitic cancers but also in sporadic colon adenomas or cancers in the real time RT-PCR analysis although its expression is not always detected in sporadic colon cancers by northern blot analysis.16,33 In addition, REG Iα gene expression was detected in all seven colon cancer cell lines examined. These findings may suggest that REG Iα is involved not only in UC-colitic cancer sequence but also in adenoma-carcinoma sequence, although the mechanism of carcinogenesis in UC-associated colorectal cancer is believed to be distinct from that in sporadic colorectal cancer.34,35 The role of REG Iα in adenoma-carcinoma sequence should also be clarified in future studies.

In summary, we have shown that REG Iα is expressed not only in epithelial cells of UC mucosa but also in precancerous dysplastic epithelial cells and colitic cancer cells. The promoter activity of the REG Iα gene is stimulated by IFN-γ and IL-6. Moreover, REG Iα protein has both mitogenic and anti-apoptotic effects on human colon cancer cells in vitro. Together, these results suggest that cytokine-induced REG Iα in the colonic mucosa plays an important role in the development of UC-associated colorectal cancer.
ACKNOWLEDGMENTS

We are grateful to Dr. Hiroshi Okamoto in Tohoku University Graduate School of Medicine, Sendai, Japan, for providing anti-REG Iα antibody.

Licence for Publication:
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its licensees, to permit this article (if accepted) to be published in GUT and any other BMJPG products and to exploit all subsidiary rights, as set out in our licence (http://gut.bmjournals.com/misc/ifora/licenceform.shtml).

Competing Interest:
Competing Interest: None declared.
REFERENCES

FIGURE LEGENDS

Figure 1. REG Iα mRNA expression in ulcerative colitis tissues. (A) REG Iα mRNA expression levels in normal colon (NC), ulcerative colitis, Crohn’s colitis and proctitis tissues. Comparison of REG Iα mRNA expression levels among groups subdivided by endoscopic appearance (B), histological findings (C) or disease duration (D, E). (F) Correlation between REG Iα expression levels and disease duration. All results are expressed as fold change in REG Iα mRNA/GAPDH mRNA ratio relative to the normal control group. Significantly different between two groups: *P < 0.05, **P < 0.01.

Figure 2. Immunostaining for REG Iα protein and PCNA in normal colon (A, B), ulcerative colitis (C, D), dysplasia (E, F), and colitic cancer (G, H) tissues. REG Iα: A, C, E, and G; PCNA: B, D, F, and H. Bars = 100µm.

Figure 3. Detection of REG Iα mRNA in various human colon cancer cell lines by RT-PCR.

Figure 4. REG Iα promoter activity in LoVo and SW403 cells in response to various cytokines. Cells were co-transfected with hREG Iα(-1195/+78)-Luc construct and Renilla luciferase plasmid pRL-TK (as a control for transfection efficiency). Forty-eight hours later, cells were stimulated with IFN-γ, TNF-α, IL-1β, IL-5, IL-6, IL-8, or IL-13. Luciferase activity was measured in extracts from transfected LoVo and SW403 cells and normalized to Renilla luciferase activity. All results are expressed as fold of the activity of the untreated cell group at the 0-hour time point. Vertical lines represent means ± SEM of four independent experiments. *P < 0.05 vs. control at the same time point.

Figure 5. Effects of REG Iα gene induction or REG Iα conditioned medium on the growth of human colon cancer cells. (A) Effect of REG Iα gene induction on growth of human colon cancer cells. LoVo cells transfected with pIRES2-hREG Iα (LoVo-REG Iα) or pIRES2-EGFP (LoVo-EGFP; control) plasmids were cultured for 24, 48, and 72 hours. WST-8 cleavage in each group was measured by ELISA (absorbance OD450) as described in Materials and Methods. (B) Effect of anti-REG Iα antibody on cell growth of LoVo-REG Iα and LoVo-EGFP. LoVo-REG Iα and LoVo-EGFP cells were incubated with or without anti-REG Iα antibody (50 µg/ml) for 72 hours. (C) Source of REG Iα protein. HEK293T cells were transfected with a human REG Iα cDNA expression plasmid or a control plasmid, and the medium conditioned by these cells was collected. The release of REG Iα protein into the conditioned medium of human REG Iα cDNA-transfected cells was confirmed by Western blot analysis with an anti-human REG Iα monoclonal antibody. (D) Time course of the effect of REG Iα conditioned medium on growth of human colon cancer cells. LoVo cells were incubated with REG Iα or control medium for 24-72 hours. (E) Effect of anti-REG Iα antibody on growth of colon cancer cells promoted by REG Iα protein. Anti-REG Iα antibody (50 µg/ml) was added to control or REG Iα medium, followed by incubation for 72 hours. All results are expressed as the mean ± SEM of 4 samples. *P < 0.05, **P < 0.01 vs. control [(LoVo-EGFP cells (A, B) or control medium-treated cells (D, E)] group at the same time point. *Significantly lower than LoVo-REG Iα cells (B) or REG Iα medium-treated cells (E) (P < 0.01).
Figure 6. Effects of *REG Iα* gene induction or *REG Iα*-conditioned medium on H$_2$O$_2$-induced apoptosis of human colon cancer cells. (A) Resistance to H$_2$O$_2$-induced apoptosis in human colon cancer cells transfected with *REG Iα* cDNA. LoVo cells transfected with pIRES2-hREG Iα (LoVo-REG Iα) or pIRES2-EGFP (LoVo-EGFP; control) plasmids were treated with H$_2$O$_2$ (0-10 mM) for 2 hours, followed by incubation in fresh culture medium for 24 hours. The percentage of TUNEL-positive cells was evaluated as described in Materials and Methods. (B) Effect of anti-REG Iα antibody (50 µg/ml) on H$_2$O$_2$ (5 mM)-induced apoptosis in LoVo-REG Iα and LoVo-EGFP cells. (C) Resistance to H$_2$O$_2$-induced apoptosis in human colon cancer cells treated with *REG Iα*-conditioned medium. LoVo cells were incubated with conditioned medium containing recombinant human *REG Iα* or control medium for 24 hours, followed by incubation for 2-hours with medium containing H$_2$O$_2$ (0-10 mM). (D) Effect of anti-REG Iα antibody on H$_2$O$_2$ (5 mM)-induced apoptosis in LoVo cells. Anti-REG Iα antibody (50 µg/ml) was added to control or *REG Iα* medium. All results are expressed as the mean ± SEM of 4 samples. *P* < 0.05, **P* < 0.01 vs. control [LoVo-EGFP cells (A, B) or control medium-treated cells (C, D)] at the same dose point. #Significantly higher than LoVo-REG Iα cells (B) or *REG Iα* medium-treated cells (D) (*P* < 0.01).

Figure 7. Effects of *REG Iα*-conditioned medium on the phosphorylation of Akt and the expression of Bcl family proteins in colon cancer cells. Western blotting indicated that the phosphorylation of Akt (A) and the expression of Bcl-2 and Bcl-xL but not Mcl-1 (B) were enhanced in LoVo cells after 12 h incubation with *REG Iα*-conditioned medium.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7