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SUPPLEMENTARY MATERIALS, METHODS AND RESULTS 

 

Cells and tissues 

Twenty pancreatic cancer cell lines, including AsPC-1, BxPC3, Capan-2, CFPAC-1, HPAF-II, 

Mia PACA-2, Pa01C, Pa02C, Pa03C, Pa07C, Pa08C, Pa16C, Pa20C, Pa21C, Pa28C, Pa222C, 

Panc-1, PK8, PK9, and Su86.86, and three primary cultures of stromal fibroblasts as normal 

controls, including CAF19, CAF25, and SC3 were maintained in DMEM (4.5 mg/ml glucose, 

Invitrogen) supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 µg/ml 

streptomycin and 100 units/ml penicillin).  DNA was isolated where available from selected 

tumor tissues by macrodissecting formalin-fixed archived paraffin-embedded tissue sections as 

previously described1 and subjected to NGS. For many cases only diagnostic fine needle 

aspirates were available, with insufficient and/or inadequate DNA for mutation analysis. 

 Genomic DNA was extracted using QIAamp DNA Micro Kit (Qiagen) and quantified by 

Quantifiler Human DNA Quantification kit (Applied Biosystems) before NGS library preparation. 

 

Reference mutant DNA pools  

Three reference pools of cancer/normal DNA were made from the 20 pancreatic cancer cell line 

DNA samples. These pools were generated by mixing cancer cell line DNA with fibroblast DNA 



(SC3) to achieve mutation concentrations in the range of 0.5%, 0.1%, and 0.01%. To do this DNA 

from 20 pancreatic cancer cell lines were mixed together and then diluted in a 1/9 ratio with SC3 

DNA for the “0.5% pool”, in a 1/45 ratio (i.e. 2.2% of cancer cell line DNA mixed with 97.8% of 

SC3 DNA to generate the “0.1% pool” and a 1/450 ratio for the 0.01% pool. (Note, since the cancer 

cell lines are aneuploid, these represent estimated mutation concentrations). The estimated 

mutation concentrations in these pools and the concentrations measured by digital-NGS are 

provided in Table S3. 

 

NGS sequencing  

The Ampliseq Custom panel was chosen for digital NGS because it can multiplex amplify 

hundreds of amplicons simultaneously from very small quantities of input DNA. For the 

sequencing of cell lines and tumor samples, standard Ampliseq and sequencing conditions were 

used according to manufacturer’s protocols. Thus, 20 nanograms of DNA (10ng for each primer 

pool) were used for Ampliseq PCR amplification, Fupa digestion, and P1 adaptor/Xpress barcode 

ligation. After library clean-up using Agencourt AMPure XP Reagent (Beckman Coulter) which 

uses magnetic separation of amplicons, the libraries were eluted into low TE buffer and 

subsequently quantified using the Ion Quantitation Kit (Life Technologies). Individual sample 

libraries were equalized to 15pM and pooled together. After introducing 20ul pooled libraries with 

emulsion PCR reagents into the Ion OneTouch2 system (Life Technologies) for 5 hours, the Ion 

Sphere Particles (ISPs) were cleaned and enriched in the Ion OneTouch ES (enrichment system) 

(Life Technologies). The enriched ISPs were loaded into a 318 chip for sequencing using an Ion 

Torrent Personal Genome Machine (Life Technologies). The post-sequencing raw fastq files were 



launched in NextGENe (SoftGenetics, Chicago, IL) software for data analysis, including 

alignment to the hg19 human reference genome and SNV calling.  Alignments were visually 

verified using the Integrative Genomics Viewer (IGV, v2.3, Broad Institute) and the 

NextGENeViewer.  

 

Digital NGS 

Pancreatic juice DNA samples were aliquoted into two 96 well plates (one for each primer pool) 

with each well containing 150 pg DNA (~40 genome equivalents). Each of the 96 aliquots of DNA 

was subjected to Ampliseq PCR followed by the subsequent steps of the NGS protocol. The 

average sequence depth of each amplicon sequenced on the 318 chip was ~500 reads for each of 

the 96 NGS reactions. The digital NGS assay was the same in the discovery and validation set with 

the exception that the RNF43 primers were modified in the validation set to improve performance. 

Several juice samples from both cases and controls underwent an additional round of digital NGS 

sequencing to confirm results. For example, the juice mutations found by digital NGS in case #37 

was confirmed by repeat digital NGS, and the juice sample from case #45 underwent a 2nd round 

of digital NGS to confirm the lack of any mutations.  

We did also evaluate the performance of digital NGS using lower concentrations of input 

DNA by performing digital NGS on 96 NGS reactions with 66pg of cancer cell line pool DNA (at 

~0.5% cancer cell line DNA concentrations), sequenced on a 318 chip, and although the results 

were very similar to those achieved with the 150 picogram digital NGS experiment on the same 

DNA pool (i.e. all mutations were detected apart from the frameshift mutations), the detection of 

mutations was somewhat less uniform, with some mutations detected in only one NGS reaction, 



when they would have been expected to be detected in many more, even after accounting for the 

lower amount of input DNA. In addition, we also performed digital NGS with higher amounts of 

input DNA (400 picograms) and compared these results to those results obtained using 150 

piograms of DNA. This digital NGS comparison was performed on several pancreatic juice 

samples. Digital NGS performed using 400 picograms per NGS reaction enabled more input DNA 

to be sequenced, and could identify hotspot mutations in KRAS and GNAS easily, but because 

using 400 picograms of input DNA would mean NGS reactions with true mutations would have 

mutation concentrations of ~0.8 - 1.0%, this version of the assay required using a lower variant 

concentration cut-off for calling mutations (0.8%) resulting in an unacceptably high false positive 

rate (data not shown).  

 

Sequence Variant calling 

Variants identified by the NextGENe software were filtered to select only variants with a 

nucleotide score of ≥30 (reference nucleotide score +mutant nucleotide score/indel score), and no 

strand bias.  Synonymous somatic mutations by digital NGS were not considered deleterious and 

were not tabulated. The potential pathogenicity of somatic mutations identified by digital NGS 

was evaluated using ClinVar. 

 

 

Droplet digital PCR methods  



Digital droplet PCR involves isolating individual DNA molecules into thousands of 

nanoliter-sized droplets by emulsification. Individual PCR reactions occur in each droplet. 

Mutations can be detected using real-time PCR using specific fluorescent probes.  

The mutational status of KRAS codon 12 was investigated with droplet digital PCR 

(ddPCR) using a BioRad GX200. Primers and probes were designed for KRAS G12D, G12V and 

G12R (these 3 KRAS mutations are found in ~ 90% of in pancreatic ductal neoplasms with KRAS 

mutations2, 3. The MGB probes were labeled with either FAM or VIC at 5’end and a non-

fluorescent quencher (NFQ) at the 3’ end. Each droplet of a PCR supermix was containing 4 µL 

(~25,000 copies) DNA, 2×ddPCRTM Supermix for probes (No dUTP) (Bio-Rad), 900nM primers, 

and 250nM probes (FAM for mutant and VIC for wild type) (Life Technologies), in a total volume 

of 20µL. The following primers were used for the KRAS assay: 5’-

GCCTGCTGAAAATGACTGAATATAAACT-3’ (Forward) and 5’-

TTGTTGGATCATATTCGTCCAC-3’ (Reverse). The following probes were used for KRAS 

assay: KRAS WT (VIC- TTGGAGCTGGTGGCGTA-MGBNFQ) and KRAS G12D (FAM-

TTGGAGCTGATGGCGTA-MGBNFQ), KRAS G12V (FAM-TTGGAGCTGTTGGCGTA-

MGBNFQ), or KRAS G12R (FAM-TTGGAGCTCGTGGCGTA-MGBNFQ). PCR cycling 

parameters: 95°C for 10 minutes, 39 cycles of 94°C for 30 seconds and 63°C for 60seconds, 98°C 

for 10 minutes for KRAS G12D, G12V and G12V assays. We obtained wild type DNA for KRAS 

codon 12 and 13 from a healthy control’s peripheral blood. To evaluate the limit of detection of 

the assay, we performed 20 replicates of a healthy subject’s peripheral blood lymphocyte DNA 

(~15000 copies /well) by ddPCR for each probe. No positive droplets were detected with the KRAS 

G12V, G12R probes, while the KRAS G12D had several wild-type DNA samples that had 1 or 2 



positive droplets. Samples were considered positive for mutations if they had droplets above these 

background levels. 

 

Statistics: 

Because Case #24 had McCune Albright syndrome, it was not included in the usual IPMN group 

for statistical purposes.  

 

SUPPLEMENTAL RESULTS 

Digital NGS Results:  

There was a good correlation between the estimated mutation concentration in the reference cancer 

DNA pools and the missense mutation concentrations determined by digital-NGS (r2=0.58, 

p<0.0001). However, only 2 of 9 (22%) of the frameshift mutations in the DNA reference pools 

were detected even when these mutations were present at ~0.5% concentrations.  

False positive SNVs in 0.5% and 0.1% pools 

We sequenced DNA from 20 pancreatic cancer cell lines and three primary fibroblasts (CAF19, 

CAF25, and SC3) with our 9-gene panel using standard Ampliseq conditions on the Ion Torrent 

PGM (Tables S2) to identify somatic mutations in these cancer cell lines. To estimate the false 

positive rate of digital NGS in DNA pools the same filters were employed as were used for the 

juice analysis. A false positive SNV in one NGS reaction was defined as any SNV that passed all 

of our filters for a mutation in an NGS reaction (i.e. how often one or more 96 individual NGS 



results of a digital-NGS assay would result in calling a sequence variant because it passed all filters 

used to detect mutation despite the variant not being present in the reference DNA pools). Based 

on the background error rate of the Ion Torrent we set a threshold mutation concentration of >1.5%, 

(3 standard deviations above the background error rate of this platform), for digital NGS reactions 

to be considered sufficient to consider it a candidate mutation. We did not find false positive KRAS 

or GNAS mutations in 96 digital-NGS reactions performed with fibroblast DNA. For hotspot 

mutation nucleotides in KRAS and GNAS, one positive NGS reaction was sufficient for calling the 

sample as positive for that mutation. .   

For other variants we required that sequence variants be detected in three multiple independent 

NGS reactions before it was classified as a mutation present in a juice sample. This requirement 

to have multiple NGS assays with the same sequence variant was based the results of sequencing 

the reference DNA pools (three sets of 96 NGS reactions performed on the cancer DNA pools and 

one set of 96 NGS reactions on a fibroblast DNA pool). Although false positive calls in one NGS 

reaction were often made in the cancer cell line pools, the same false positive SNV was detected 

in more than one well only twice, and the same false positive SNVs was not detected in 3 NGS 

reactions. There were no false positive mutations detected in any of the hotspot mutations in KRAS 

or GNAS in a 96 reaction digital NGS run performed on fibroblast DNA and there was a high 

concordance between digital NGS and ddPCR results for KRAS mutations. Of the top 9 most 

common hot spot mutations mutated in TP53 (R175H, R248Q, R248W, R273H, R273C, R282W, 

Y220C, R213*, R196*, 3 of these mutations were present in the mutant cancer cell lines pools. 

None of the other mutations were detected in more one than one NGS reaction to indicate that false 

positive mutations in the TP53 hotspot mutations are common.  For this reason, we called all KRAS 

mutations identified by digital NGS as positive, and set a threshold for requiring 2 digital NGS 



reactions to call is hotspot mutations in TP53 and 3 NGS reactions for all other mutations. We also 

reported digital NGS scores of 1 for mutations that were also found at higher levels in other juice 

samples from the same patient (e.g. SMAD4 Q256X, TP53 R175H; Table 3).  

Digital-NGS addresses the problem of false-positive mutation calls arising due to sequencing 

errors of NGS assays by requiring that, in addition to the usual filters used for NGS variant calling, 

the same sequence variant be detected at the expected mutation concentration in multiple 

independent NGS reactions before considering it a true mutation4. Polymerase errors generated 

during initial rounds of PCR could create sequence variants in a digital-NGS reaction at sufficient 

concentrations to resemble those expected from sequencing a true mutation, but since most of these 

sequencing errors arise randomly, the same sequencing error is unlikely to arise in more than one 

of the 96 digital-NGS reactions. Requiring that a variant be detected in three independent NGS 

reactions reduces the chance that sequencing errors will be identified incorrectly as mutations and 

a higher requirement for positive calls could be used to further increase assay specificity over 

sensitivity. 

 

Mutation detection using digital-NGS versus digital-droplet PCR 

In the discovery set, digital-NGS was performed to identify low abundance mutations on 53 

pncreatic juice samples.  We compared these results to those obtained using ddPCR for the 3 most 

common KRAS mutations (G12D, G12V and G12R)5. Of 43 KRAS mutations detected in 52 juice 

samples using digital-NGS, ddPCR detected the corresponding mutation in the corresponding 

sample 39 times (90.7%). The 4 mutations not detected in the corresponding juice samples by 

ddPCR all had very low concentrations of mutant KRAS (~0.05% by digital-NGS). DdPCR 



detected all mutations in juice samples that had a mutation score by digital-NGS of >3. Digital-

NGS identified all the KRAS mutations in the corresponding juice samples at concentrations 

of >0.1% as measured by ddPCR. Three cases, one control (case#5, G12V), and two patients with 

PDAC (case#41, G12V and case#51, G12V and G12R), had low mutant KRAS juice 

concentrations (0.03% to 0.07% by ddPCR) below the limit of detection of the digital-NGS assay 

we employed for this study.  

 

Discovery set results 

In the discovery set, 20 of 22 (90.1%) patients with PDAC and 16 of 17 (94.1%) diagnosed 

with IPMN (without PDAC) had mutations detected in their pancreatic juice, compared vs. 5 of 

13 (38.4%) controls (both p=0.002).   KRAS mutations (detected by digital-NGS and ddPCR) were 

found in juice samples of 5 of 13 controls (38.4%), 13 of 17 (76.5%) juice samples from patients 

with IPMNs, and 18 of 22 (81.8%) patients with PDAC. Several patients, particularly those with 

PDAC, had multiple KRAS mutations detected in their juice samples5. Eighteen juice samples had 

TP53 mutations, including 12 from cases with PDAC, and 6 with IPMN. All but one of these TP53 

mutations is judged deleterious in the IARC TP53 mutation database (http://p53.iarc.fr/). Seven 

SMAD4 mutations were detected in six patients, 5 with pancreatic cancer, one with IPMN, three 

truncating and 4 missense mutations. One missense mutation (P198S) is probably benign; the 

others are suspected to be deleterious. W524R has been identified in a gastric cancer6,  W524L 

causes juvenile polyposis7, and the A457V and M543T mutations are located in regions where 

missense mutations are deleterious8-10. Numerous SMAD4 missense mutations cause polyposis 

syndromes7, 11. Mutations in TP53 and SMAD4 were not detected in the juice samples of controls 



but were found in 14 of 22 (63.6%) cases with PDAC (p<0.001). Cases diagnosed with IPMN (16 

of 17) were more likely to have mutations detected in their pancreatic juice than controls (p<0.002). 

Fourteen (56%) of the 25 cases diagnosed as having IPMN (including 8 cases with PDAC and 

IPMN) had GNAS mutations detected in their pancreatic juice samples. Of the twelve cases that 

had RNF43 mutations in their pancreatic juice, 8 also had a GNAS mutation, and 6 arose in patients 

diagnosed with IPMN. Cases diagnosed with IPMN were also more likely than controls to have 

mutations other than KRAS and GNAS detected in their pancreatic juice samples (11 of 17 vs 1 of 

13) (p=0.002). Deleterious TP53 and/or SMAD4 mutations were found in the pancreatic juice of 6 

of 17 patients diagnosed with IPMN without associated invasive cancer. Eight patients with IPMN 

underwent pancreatic resection, 4 with low-grade dysplasia (3 also had PanIN-2) and 4 with 

intermediate-grade dysplasia in their IPMN. Three of these 8 cases that underwent resection had 

TP53 and/or SMAD4 juice mutations and had intermediate-grade dysplasia in their IPMN and/or 

PanIN-2 in their resection specimen; the other cases with IPMN are still under surveillance without 

evidence of progression one or more years after their juice sample was obtained.  

In the discovery set, pancreatic juice mutation concentrations were significantly higher in 

juice samples from patients with PDAC compared to controls (p<0.001), as were concentrations 

of mutant KRAS alone (p<0.001) and concentrations of mutant TP53 and/or SMAD4 (p<0.001). 

By ROC curve analysis, overall digital-NGS mutation scores could distinguish PDAC cases from 

controls with an AUC of 0.88 (p<0.001). Pancreatic juice concentrations of mutated TP53 and/or 

SMAD4 were higher among cases with PDAC than those with IPMN (Mann-Whitney, p=0.026).  

By ROC curve analysis, digital-NGS scores for mutant TP53 and/or SMAD4 could distinguish 

PDAC cases from IPMN cases without PDAC with 50% sensitivity and 82% specificity (AUC 

0.71, p=0.0028), and from controls with an AUC of 0.79 (p=0.002). Among PDAC cases with 



TP53 and/or SMAD4 mutations, 7 of 14 had digital-NGS scores of >5 compared to 0 of 6 with 

IPMN (p=0.03). By ROC analysis, overall digital-NGS scores could also distinguish IPMN cases 

from controls with an AUC of 0.83 (p=0.001) and digital-NGS scores for mutant TP53 and/or 

SMAD4 could distinguish IPMN cases from controls with an AUC of 0.72 (p=0.046). Only one 

patient with an IPMN (case#20) had a BRAF mutation detected in their juice sample and one 

(case#53) had a PIK3CA mutation. Only deleterious variants were included in the analysis, tables 

and figures. One juice sample in the discovery set had a TP53 mutation detected in their juice 

sample that is not in the IARC database (M340V, from a patient with an IPMN). All other TP53 

mutations have been reported to be deleterious in the IARC TP53 mutation database 

(http://p53.iarc.fr/). One SMAD4 missense mutation (P198S) was found and judged to be benign. 

 

Validation set results 

In the validation set there were 62 cases (#54-#115), 11 cases with pancreatic cancer, 11 normal 

pancreas controls and 40 with IPMN. The results of the validation set were very similar to the 

discovery set and are summarized in Table 2, Figures S1, S2 and S3.  

 

Further description of combined set results 

SMAD4 missense mutations: W524R has been identified in a gastric cancer6,  W524L causes 

juvenile polyposis7, and the A457V and M543T mutations are located in regions where missense 

mutations are deleterious8-10.  



The percentage of cases with IPMN that had GNAS mutations in their pancreatic juice in this study 

(53%) is similar to what we reported recently (51%)5. In our first report describing GNAS 

mutations12, we reported that 64% of patients with pancreatic cysts diagnosed with IPMN had 

GNAS mutations detected in their pancreatic fluid of patients, but we also reported a lower 

percentage of patients with diminutive cysts had GNAS mutations (45%). At that time we 

considered diminutive cysts separately from larger cysts because we were not certain what the 

etiology of these diminutive cysts were.   We now know that most of these diminutive cysts have 

GNAS mutations and are IPMNs or incipient IPMNs13 so we no longer make this distinction.  
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