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AbsTRACT
The host-microbiome supraorganism appears to have 
coevolved and the unperturbed microbial component 
of the dyad renders host health sustainable. This 
coevolution has likely shaped evolving phenotypes in 
all life forms on this predominantly microbial planet. 
The microbiota seems to exert effects on the next 
generation from gestation, via maternal microbiota and 
immune responses. The microbiota ecosystems develop, 
restricted to their epithelial niches by the host immune 
system, concomitantly with the host chronological 
development, providing early modulation of physiological 
host development and functions for nutrition, immunity 
and resistance to pathogens at all ages. Here, we review 
the role of the microbiome in human development, 
including evolutionary considerations, and the maternal/
fetal relationships, contributions to nutrition and growth. 
We also discuss what constitutes a healthy microbiota, 
how antimicrobial modern practices are impacting the 
human microbiota, the associations between microbiota 
perturbations, host responses and diseases rocketing in 
urban societies and potential for future restoration.

EvoluTion of ThE miCRobioTA
Bacteria arose about 3.8 billion years ago,1 and 
the eukaryotic lineage, which includes humans, 
arose after the oxygenation of earth’s atmosphere 
2.2–2.4 billion years ago.2 Together with archaea, 
protists and fungi, bacteria remained free-living 
single cells although some became host-associated. 
Thus, an animal holobiont (the animal host and its 
evolved microbial communities)3 spans the phylo-
genetic tree: the animal host, plus its associated 
microbiota such as bacteria, archaea, fungi, protists, 
helminths and viruses (figure 1). The collective 
genome content of microbiota or the microbial 
metagenome was coined the microbiome,4 although 
microbiome and microbiota are currently used 
interchangeably.

By coevolving with the host, the microbiome has 
shaped phenotypes in our ancestral lineages. The 
congruence of the phylogenetic trees of intestinal 
bacterial microbiota and primates5 demonstrates 
host-microbiota coevolution and implies with-
in-species transmission of microbes across gener-
ations. Through the process of natural selection, 
mutations lead to evolutionary adaptations to 
environmental conditions and increased fitness in 
these environments. Human environments have 
changed dramatically during human evolution, and 
dietary changes and exposures to famine have been 
major selective pressures. While there is evidence 
of adaptive survival traits to starvation on the 
human genome,6 human microbiome adaptations 
that offer energy-sparing traits for the human host 

remain unknown. Abrupt changes in environmental 
conditions can lead to mal-adaptations (adaptations 
that were beneficial when first took place, but not 
anymore under new environmental conditions). 
Today, modernisation and urbanisation pose exactly 
this challenge to human health.

Together with their microbionts (microbiota 
members), hosts evolved an immune system, which 
prevents microbial colonisation in the topological 
interior of the body. Host immune systems evolved 
complex mechanisms to identify and destroy 
invading microbes, whether they are microbionts 
or primary pathogens that cross into forbidden 
territories. Immune molecules evolved more than 
500 million years ago, in choanoflagellates, unicel-
lular progenitors of metazoans,7 and there is 
growing evidence that the innate immune system—
antimicrobial peptides and repertoire of pattern 
recognition receptors—evolved in response to the 
need for controlling the epithelium-colonising 
microbiota.8

The human immune system restricts microbiota 
to their natural niches in the body ‘exterior’ and 
invaginations: epithelia that cover the body (such 
as skin and mucosa) and the gut, which, strictly 
speaking, is a hollow tube that traverses the body 
with the influx of external materials (diet). Thus, 
the microbiota occupies the interface between our 
bodies and the exterior, and interactions with the 
environment (including diet, sun-light, bathing, 
cosmetics) cross this interface. The microbiota is at 
the same time self and non-self: it is part of our 
biology, but consists of fast-evolving entities that 
respond rapidly on physiological, ecological and 
evolutionary timescales to external perturbations 
in ways that affect our phenotypes (figure 1). The 
gut microbiota have been shown to impact diverse 
physiological processes ranging from adiposity/
obesity, to energy metabolism, blood pressure 
control, glucose homeostasis, clotting risks or even 
behaviour. In each case, there are mechanistic ties 
between gut microbes, metabolites they generate 
and host receptors and phenotypic responses. 
Evolutionary considerations are crucial to under-
standing the nature of microbial-host interactions, 
perturbations and health consequences and will 
ultimately need to be understood and exploited in 
order to prevent and treat ‘modern’ diseases.

DEvElopmEnT AnD ThE miCRobioTA: fRom 
fERTilisATion To biRTh
In some insects, bacteria colonise egg capsules 
during mating, and the individual is colonised 
before hatching.9 In mammals, fertilisation 
occurs in an immune-protected organ, the uterus. 
However, immune protection means lack of colo-
nisation, but not necessarily sterility at all times. 
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Indeed, it seems possible that some bacterial cells of the uterine 
cervix10 may enter with the sperm during fertilisation and reach 
the egg at the time of fertilisation, implantation or early embry-
onic development. Regardless, immunity appears to preclude the 
establishment of a microbial community in immune-protected 
organs. Uterus, placenta, fetus as well as blood appear void of 
a microbiota, although they may contain bacterial DNA or even 
some isolated live bacteria. There is a current controversy about 
whether the presence of bacterial DNA contradicts the notion of 
sterility, but the presence of circulating bacterial DNA, such in 
the blood11 or placenta,12 or even sporadic presence of an alive 
intruder bacteria does not demonstrate a living blood micro-
biota and does not challenge the current paradigm of sterility 
in immune-protected organs. There might be a transitory ‘mini-
sepsis’ when live cells enter the blood after injuries, microabra-
sions or mucosal ‘leaking’13—including transient bacteraemia 
due to tooth-brushing14—, but in healthy individuals, the 
intruders are cleared by phagocytic cells rather than colonising 
and assembling microbial communities. Fetal development is an 
important period for the reproduction of placental species, and 
gestational infection and inflammation reduce fecundity and 
increase the risk of spontaneous preterm birth15 16 The concept 
of sterile fetal development remains, and little is known about 
mechanisms and functions of transplacental trafficking of free 
nucleic acids.

The maternal microbiota may exert an indirect effect on the 
fetus via maternal factors such as maternal immune responses 
or microbial metabolites that cross the placenta17–19 or more 
indirectly via factors that may mediate epigenetic program-
ming in the fetus, such as diet,20 stress21 or neuroendocrine 
exposure,22–24 which also affect the maternal microbiota. The 
gut25 and vaginal26 maternal microbiota change with gestation, 
and whether or not these changes have adaptive value for the 
mother or baby is still unknown. It has been suggested that they 
allow the fetus to derive energy from the mother’s blood, more 
efficiently,25 or that butyrate-producing bacteria may sustain 
gut epithelial functions and promote immune tolerance in the 
mother.27

Labour and birth represent the first major exposure to a 
complex microbiota and is the primordial mechanism for inter-
generational microbiota transfer in mammals. Ancestral verte-
brates (birds, reptiles, finned fishes) and, exceptionally among 

mammals, the Monotremes, lay eggs through a single canal—
the cloaca—shared for excretion and reproduction. Placental 
mammals evolved separate canals for reproduction (vagina), 
excretion of faeces (anus) and urine (urethra), and the birth canal 
is always adjacent to the rectum (but not the urethra), providing 
an efficient mechanism for intergenerational transmission of 
both vaginal and gut microbes. Rupture of the chorioamniotic 
membrane allows exposure of the baby to the maternal vaginal 
and perineal faecal microbes. Indeed, prolonged labour poses 
a risk of infection by opportunistic microbionts.28 Infants are 
naturally born with their skin and mouth covered by maternal 
inocula and have swallowed these microbes,29 30 supported by 
the observation of both DNA31 and live bacteria31 in the meco-
nium. Thus, we inherit the primordial microbiota from our 
mothers, grandmothers and further on the matrilineal line, with 
microbial vertical transmission extending back to earlier ances-
tors32 (box 1). Whether the primordial inoculum contains most 
microbes that will be nurtured by the child, and which maternal 
strains colonise which parts of the baby’s body and their func-
tions, the paternal and sibling contribution along with the infant’s 
microbial diversity33 and the extent to which modern practices 
reduce intergenerational transmission, are still not completely 
understood. C-section as intrapartum antibiotics during vaginal 
delivery alter bacterial colonisation in the neonates.34

posTnATAl DEvElopmEnT of ThE miCRobioTA
By definition, placental mammals develop in a placenta, are born 
through the maternal vagina and drink maternal milk during the 
initial developmental window during which remarkable changes 
occur. Animals can develop without microbiota, as shown by the 
existence of germ-free mice, rats, chickens and pigs, but they 
have abnormal phenotypes and the microbiota is believed to 
be required for normal development. Pioneer neonatal bacteria 
prime the development of the microbiota, immune, metabolic, 
hormonal and nervous systems in the neonate.35 36 Under 
natural conditions, the neonate and the microbiota develop in 
an orchestrated fashion under the nutritional, immunological, 
hormonal and prebiotic effect of maternal milk—a single food 
of complex biological formulation.37 Bacteria acquired during 
labour include lactic acid bacteria that digest lactose, and others 
that use substrates that are indigestible for the babies (indi-
gestible milk glycans known as  human milk  oligosaccharides, 
or HMOs),38 39 with polymorphisms, such as in fucose trans-
ferase gene FUT2, associated with selective effects of HMOs on 
the infant microbiota composition,40 which in turn can affect 
the susceptibility to immune diseases later in life.41 Milk also 
includes urea and oxalate, two end-products of human metab-
olism. Why would nature include such indigestible molecules 
in the diet of young mammals? There are beneficial microbes 

figure 1 Evolution of the holobiont and vertical transmission through 
human generations.

box 1 highlights of the holobiont evolution

 ► Evolution of all complex life forms has occurred in 
associations with bacteria, the first forms of life on earth.

 ► The human body carries representatives of all branches of 
the tree of life (Animalia-Homo sapiens, and protozoa, fungi, 
archaea, bacteria conforming the microbiota).

 ► The microbiota has been transferred throughout generations 
of humans, with the matrilineal line transferring the 
primordial birth microbiota.

 ► The vertical human transmission has led to conservation of a 
phylogenetic signal in human microbiota communities.
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that can use these molecules such as carbon, nitrogen or other 
energy sources. The types of glycans found in breast milk can 
shape the infant gut microbiota and the microbial composition 
of breast milk, specifically of Bifidobacterium species.42 The 
degree of development of the sensory and motor capabilities of 
the brain in neonates during strict lactation is remarkable. Ulti-
mately, understanding this period, the functions of milk glycans 
and other molecules, and the microbes they select, will be critical 
to understand human development.

Other ways in which the microbiome has been related to 
development include the synthesis of vitamins during postnatal 
development. There is poor vitamin K diffusion through the 
placental barrier,43 thus neonates are born with low vitamin K 
levels.44 Later, intestinal bacteria will provide K2 or menaqui-
none, and older children will consume it from vegetables in the 
form of phylloquinone. Vitamin K is necessary to synthesise 
functional forms of coagulation factors II, VII, IX, and X in the 
liver.45 Often clinicians consider that neonates are vitamin K-de-
ficient, but again, from the evolutionary perspective, we need 
to ask why has this trait been selected during our evolution. 
Similarly, it is thought that babies that are exclusively breastfed 
may become deficient in vitamin B12 due to the lack of solid 
foods rich in this vitamin.46 Does it hold adaptive value or is it a 
maladaptation? The answer to this question is important, since 
clinical interpretations lead to public health measures that affect 
millions of infants, such as the recommended vitamin K boost to 
all neonates.47 We need to understand our biology first, before 
we define pathologic scenarios and intervene. Much research is 
needed to identify adaptations that we must respect, and then 
define the maladaptations that need to be addressed.

The microbiota development trajectory from birth follows 
dynamic changes. Immediately after birth, there seems to be 
a decrease in gut alpha diversity48 49 probably reflecting the 
selective pressure of the substrate constraints of milk, and by 
1 week of age, the gut microbiota is already very similar to that 
in a month-old baby.50 Infants develop during the first 6 months 
under the selective pressure of milk shaping the gut microbial 
communities, whose metabolites promote peripheral regulatory 
T-cell generation.51 Bacteria given to germ-free mice induce 
germinal centres (lymphoid cells) to produce IgA+ B cells.52 
Bacterial molecules also induce mucosa-associated lymphoid 
tissue of the intestine, via Toll-like receptors, and shape the intes-
tinal Th-cell mediated immunity.53 Thus, antigen-driven priming/
activation, polarisation and expansion of naïve T cells yield Th1 
and/or Th17 effector cells,54 which enter the systemic circula-
tion and home to the gut to help destroy the invading patho-
gens.55 GF animals consistently exhibit impaired development of 
Peyer’s patches,56 have reduced numbers of T-helper (Th)1 and 
Th17 cells, with the intestinal T-cell immune response primarily 
controlled by Th2 cells.57 Importantly, the imbalances in Th-cell 
responses in GF mice can be reversed by restoring the micro-
biota.52 Th17/Tregs are involved in tolerance of and is induced 
by microbionts such as H. pylori and commensal Clostridia-re-
lated bacteria.58 59 Perturbations that reduce transmission and 
early colonisation of human bacteria lead to reduced numbers 
of Th17 cells in the small intestine.52 Environmental variables 
may also affect the microbiota, such as number of siblings (babies 
with siblings have increased gut Bifidobacterium catenulatum) 
and sex (girls having higher gut B. fragilis and Lactobacillus spp. 
than boys).60 Finally, evidence suggests that longer duration of 
breastfeeding is associated with decrease in risk of overweight.61

In the large intestine and colon, bacteria can either colonise 
the epithelial mucosa, digesta particles or live free in suspension 
in the liquid phase. Particles and liquid colonisation is dictated 

in part by transit time in the intestine. After strict lactation ends, 
dentition begins, and the GI system of the baby has matured to 
handle dietary solids that reach the postabsorptive sites and bring 
new substrates. These solids change the conditions in the hindgut, 
selecting for bacterial populations with relevant metabolic activi-
ties and the microbial diversity of the intestine increases steadily 
until at least age 3 years.62 This increase in diversity may reflect 
the increased chemical diversity of a complex diet and the gut 
and immune maturation of the host.

The new solid diet has components refractory to proximal 
intestinal digestion, such as some starches and cell wall polysac-
charides of plant origin, which are fermented by bacteria in the 
large intestine. The products, short chain fatty acids, have modu-
latory roles in host metabolism and immunity. Butyrate has bene-
ficial effects, being energy source for colonocytes, maintaining 
epithelial integrity in the gut,63 supporting Treg differentiation 
and driving anti-inflammatory responses,51 as shown with bacte-
rial butyrate producers, such as Faecalibacterium prausnitzii,,64 
or by direct supplementation of butyrate to mice.65 Propionate 
also potentiates de novo Treg-cell generation in the periphery.51 
Butyrate and acetate regulate satiety,66 67 with acetate being 
obesogenic.67 High Bacteroides and low acetogens and methano-
gens have been associated with reduced weight gain.68

The convergence in metabolic products produced by the 
repertoire of microbes in the gut ecosystem is an example of 
functional redundancy. Functional redundancy is a recognised 
trait of the microbiota in human adults,69 leading to high inter-
individual variability and, importantly, increasing resilience of 
the ecosystem. Redundancy probably increases with age, at least 
during the first 3 years of life, when diversity is gained,62 but this 
phenomenon is still poorly understood. We are depleting our 
ancestral microbiome diversity and its functional repertoire, and 
this results in compromising redundancy, with detrimental effects 
on the resilience that governs complex metabolic interactions.

moDERn DisRupToRs of ThE miCRobioTA AnD moDERn 
DisEAsEs
Industrial urban societies have dramatically changed human life-
style in relation to traditional societies, and the world is becoming 
increasingly urban. The changes are complex, including housing, 
urban plan, human density, home architecture, technologic isola-
tion of houses from the environment, ventilation, diet, clothing, 
exercise, personal care products and medicines. Understanding 
what changes with urbanisation requires a multidisciplinary 
approach and is important because sudden environmental 
changes may lead to maladaptations. Urbanisation is indeed asso-
ciated with increased risks of immune and metabolic diseases, 
including obesity, T1D, behavioural disorders, IBD and asthma, 
all of which have been increasing in recent decades,70–73 and with 
reduced gut microbiota diversity.62 74 Although human genetics 
affects host development as well as the structure of the micro-
biota,75 the effect of environmental factors on the microbiota is 
known to be substantial. Practices that significantly impair trans-
mission and colonisation of bacteria early in life are abundant 
in modern societies, and we have learnt from ecological studies 
that compounded impacts or removal of high competitive popu-
lations reduces alpha diversity, while removal of more cooper-
ative bacteria (or of redundant bacteria) has a smaller effect on 
diversity. Selective pressures that are shaping microbiome char-
acteristics within high-income countries may include prenatal 
and postnatal antibiotics exposure, dietary antimicrobials, 
toothpaste, soaps and perhaps even consumption of chlorinated 
water. The direction of changes of the microbial ecosystem after 
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perturbations depends on the ecosystem and does not always 
imply reduction of diversity. For example, perturbations in the 
microbiota of the vagina and of the stomach, which are naturally 
of low alpha diversity, increase richness and evenness.

There are connections between increased disease risks and 
microbiota. Obesity risk has been epidemiologically associated 
with C-section birthing and early antibiotic exposure.73 Evidence 
of obesity causation has been shown in mice,76 with popula-
tion-scale studies leading to identification of bacteria that when 
transplanted to mice had physiological effect on body mass.77

Early life microbiota functions are likely to be key in under-
standing the aetiology of chronic immune diseases of urban 
societies and where potential for their prevention resides. In the 
gut, reduced microbiota diversity is consistent with reduction 
in resilience—the capacity to bounce back after perturbations—
and in resistance—to pathogens. In clean urban settings, where 
sanitation and vaccines diminish colonisation by pathogens, 
reduction in resistance might not be as important as it was as 
in ancestral human societies exposed to more infectious chal-
lenges). However, with the compounded effects of perturba-
tions exerted by the antimicrobial practices of modern life, loss 
of resilience might be important. Moreover, much research is 
needed to understand the role of gut microbiota in vaccine and 
immunisation efficacy, the timing of vaccines provided to infants 
and children and the impact of not just antibiotics, but other 
drugs78 on microbial community structure.

Gestational use of antibiotics affects microbiota colonisation in 
the infants.79 In the USA, about one in two women is prescribed 
an antibiotic during pregnancy or at term, and beta-lactams, 
vancomycin, nitrofurantoin, metronidazole, clindamycin and 
fosfomycin are generally considered safe. However, antibiotics 
given 4–5 days before birth in mice changed proportions in gut 
bacteria in the litters and affected lung lymphoid cell devel-
opment.80 Lack of maternal microbiota exposure at birth, as 
happens in the C-section born, leads to alterations in the micro-
biota of babies30 49 and in fatty acid and bile acid metabolism.60 
Formula also alters the baby microbiota81 and the modern prac-
tice by working mothers, of bottle feeding breast milk -rather 
than directly breastfeeding- may also have effects. This prac-
tice involves refrigerating or freezing - thawing and reheating 
breast milk, and reduces maternal-baby contact. How this might 
affect microbial transmission has not been studied. Thus, the 
compounded effect of prenatal, perinatal and postnatal antibi-
otics, C-section birth, formula feeding, reduced skin to skin and 
mouth-breast contact between babies and mothers, extensive 
bathing of the neonate and other hospital interventions and a 
built environment isolated from the natural environment, might 
all count and be cumulative in their effects.

More information is needed to understand the functions of 
the early microbiota and its relation with later health conditions. 
Cohort studies are currently ongoing;  ClinicalTrials. org shows 
17 longitudinal clinical trials with interventions and 18 without 
interventions, being performed in infants (table 1).

The interventions include important issues such as at birth 
exposure to vaginal fluids and skin-to-skin contact, dietary 
supplementation with probiotics, proteins, carbohydrates, 
fortified milk, antibiotics in preterm babies. Outcomes include 
microbiota development, bacteriophage populations during 
development, infant growth, urinary metabolites, immune 
profiles, incidence of infections, the development of infantile 
colic, celiac disease and bronchopulmonary dysplasia as well 
as sleep behaviour and neurodevelopment. Causation studies 
are difficult in humans, and normally involve longitudinal 
randomised clinical trials, which are expensive, and in the USA 

typically require an Investigational New Drug (IND) approval 
from the Food and Drug Administration (FDA), which adds 
costs, complexity and time to the studies. Certainly, more studies 
are needed to determine reproducibility, safety and benefits of 
early restorations to C-section-born babies, particularly in the 
context of randomised control studies addressing the risk of 
asthma, atopy and other relevant clinical endpoints.

Medicine is one of the great human creations, and its life-
saving capability has driven the substantial increase in human 
lifespans. Medical interventions such as vaccines, antibiotics and 
surgery have contributed dramatically to improve life expec-
tancy. For example, antibiotics treat major killers including diar-
rheal disease and pneumonia and C-sections save both infants 
and mothers, with formula nourishing and supplementing chil-
dren that cannot be breastfed. However, these interventions 
come with costs that have been underestimated, with the conse-
quent overuse and abuse. Such costs are only justified when the 
intervention is needed. Changes in practice will only arrest the 
current trend, and restoration efforts will be needed to decrease 
the intervention costs. Identifying the ‘when’ and ‘what’, the 

Table 1 Clinical studies on the development and restoration of the 
infant microbiome

intervention/follow-up up without 
intervention

ClinicalTrials.gov 
identifier

participant 
enrolment

Antibiotics at birth NCT02477423 80

Antibiotics in preterm NCT02784821 420

At-birth restoration with vaginal fluids NCT03298334 800

Diet supplementation—eggs NCT03385252 662

Diet supplementation—sweet potato 
vs pear

NCT03229863 120

Diet supplementation—Human milk 
fortifier

NCT03214822 30

Diet supplementation-maternal—
Omega-3

NCT03297801 109

Diet supplementation—protein sources NCT02142647 40

Human milk donor NCT02573779 125

Probiotic/prebiotic supplemented 
formula

NCT03320837 108

Probiotics NCT03388112 30

Probiotics B. breve NCT03219931 320

Probiotics in preterm NCT02197468 60

Probiotics in preterm NCT02695784 40

Rotavirus vaccine NCT03031743 88

Rotavirus vaccine NCT02220439 76

Skin-to-skin contact NCT03181269 88

Follow-up without intervention NCT03001167, 
NCT02121938, 
NCT03365583, 
NCT03236194, 
NCT01789268, 
NCT02778750, 
NCT02526004, 
NCT02843087, 
NCT03229967, 
NCT01661491, 
NCT03235635, 
NCT03296631, 
NCT03396198, 
NCT02836119, 
NCT03335202, 
NCT02061306, 
NCT03213275, 
NCT03373721

Variable
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timing of interventions and the breadth of influence of specific 
microbial species and strains, is essential if we are to intervene 
effectively. Restoration efforts ought to be carefully considered, 
weighing risks and potential benefits. For example, restoration 
of the neonatal microbiota of C-section born neonates with 
maternal vaginal fluids82 has raised concerns of infection risks to 
neonates posed to by vaginal exposure83 84 (see also ACOG note 
in https://www. acog. org/ Clinical- Guidance- and- Publications/ 
Committee- Opinions/ Committee- on- Obstetric- Practice/ Vaginal- 
Seeding), and although this exposure is natural and has been 
conserved over the millions of years of mammalian evolution, 
only solid scientific demonstration of health benefits will pave 
the road for the practice to become standard clinical practice. 
Restoration approaches are also promising to counteract the 
associations between altered microbiology in successfully treated 
childhood cancers and the consequent persistent increased risk 
of inflammatory diseases.85

Creating a synthetic human milk
Research on prebiotic and probiotic functions of human 
maternal milk could lead to the design of synbiotic formulas 
that respect the developmental biology of the child and drive a 
healthy infant gut, although frankly, it will take years to produce 
a biologically appropriate synthetic human milk that includes 
the changing circadian and developmental levels of glycans 
(HMOs), hormones, cells and antibodies. We are far from being 
there, but the initial efforts have started with the Danish Biotech 
Glycom adding N- Acetyl-D-Neuraminic acid to formula.86 
Understanding the coevolution of milk glycans, the immune 
system and gut bacteria in infancy across mammals may provide 
a translational model for modulation of the gut microbiota.

Research on prebiotic and probiotic functions of human 
maternal milk could provide an important information base to 
design synbiotic formulas that respect the developmental biology 
of the child, to drive a healthy infant gut. We are far from being 
there, but the initial efforts have started with the Danish Biotech 
Glycom adding N- Acetyl-D-Neuraminic acid to formula,86 
but of course milk is far more than that and contains glycans 
(HMOs), hormones and antibodies. A recent oral synbiotic 
preparation of a Lactobacillus plantarum and fructooligosaccha-
ride resulted in a reduction of neonatal sepsis in rural Indian 
newborns.87 Understanding the coevolution of milk glycans, the 
immune system and gut bacteria in infancy across mammals may 
be critical in improving human health in infants and provides a 
translational model for modulation of the gut microbiota.

Restorations of mothers to hand out the next generation 
microbiota
The idea of freezing healthy stools and using them to restore 
after antibiotic treatment has not been implemented but seems 
ecologically plausible. Babies could have their predisease micro-
biota restored, and adults too, particularly women, who play a 
particularly important role in transmitting the human microbiota 
to the next generation. There is a need for services provided by 
companies, who allow families to regularly store the growing 
infant microbiota, for this purpose; being a self-transplant, it is 
not clear what will be required from regulatory agencies such as 
the FDA.

WhAT is A hEAlThy miCRobiomE?
Individuals differ enormously in the taxonomic content of their 
microbiota, and even the same person over time can appear 
dramatically different from their own prior representation. 

Functional redundancy makes the characterisation of the healthy 
microbiome extremely complex, because different taxonomic 
profiles can lead to ecosystems with similar behaviour. It is also 
unclear whether ‘normal’ in a human population implies healthy, 
because the health optimum might be context-dependent both 
at a population and at an individual level—is the average micro-
biome of lean 20-year-olds, half of whom will become chron-
ically ill 70-year-olds, really healthy? Studies of healthy children 
in 10 locales in Asia showed substantial variation in the compo-
sition of the gut microbiota, yet there was a clear North-South 
pattern in terms of predominant taxa, likely related to different 
levels of socioeconomic modernisation and market integra-
tion.88 Thus, we do not yet know what are the key features of 
healthy microbiomes, beyond the descriptive composition that 
characterises body sites: Staphylococcus, Streptococcus, Actino-
myces, Veillonella, Fusobacterium, Porphyromonas or Treponema 
species in the oral cavity89, with shared lifestyle, environment 
and genetic factors playing a role;90 Acinetobacter and Aeriba-
cillus in the ocular surface, Pseudomonas on the lid margin and 
conjunctiva;91 Actinobacteria (Corynebacteriaceae and Propion-
ibacteriaceae and Firmicutes—mostly Staphylococcaceae, Bacte-
roidetes and Proteobacteria in the skin,92 lipophilic organisms 
such as Propionibacterium spp. and the fungus Malassezia spp. 
in areas of higher density of sebaceous glands (face or back),93 94 
Firmicutes and Bacteroidetes, including Bacteroides, Prevotella, 
Ruminococcus, Bifidobacterium, Streptococcus, Enterobacteria-
ceae, Enterococcus, Lactobacillus, the Verrucomicrobia Akker-
mansia and the archaeal Methanobrevibacter smithii in the 
mucosal surfaces of the gastrointestinal tract,95–100 and Lacto-
bacillus spp. in the women’s genital tract.101–105 The ubiquity of 
the ‘core’ dominant metabolisms69 contrasts with the variability 
of niche-specific low abundant functions, many of which remain 
uncharacterised. A possible approach to the complexity of the 
human microbiome variability and disease risks is to obtain 
longitudinal data from multiple cohorts in global studies from 
which subjects developing any diseases throughout their lifespan 
are excluded, and only the healthy subjects (lacking a disease 
phenotype) are considered. In ecosystems like the gut, the extent 
of diversity is one proxy for health. Immigrants from devel-
oping countries lose diversity across human generations, as they 
develop westernised lifestyles and diseases.106

In children, we urgently need prospective studies that assess 
how well the microbiome matures across a population of healthy 
individuals, just as we normalise the maturation of height and 
weight in children and then compare those with disease states—
essentially a growth curve for the developing microbiome. Just as 
for these physical attributes, knowledge of normal development 
allows abnormalities to be detected. Studies in humans using 
such approaches now indicate that it is possible to recognise the 
effects of disease states, for example,  malnutrition107 and also 
the effects of perturbations, such as C-section or antibiotic expo-
sures. Physicians have begun to use concepts of maturation in 
pathological states, such as in recipients of bone marrow trans-
plantation or after faecal transplant to treat C. difficile infection 
to predict who might have a more successful outcome.

Focusing on functions, rather than taxa, may be important 
in addressing some research and clinical questions but may not 
be applicable to others, because each strain delivers a combina-
tion of functions, under multiple selection pressures and thus 
it is difficult to determine which components of the ecosystem 
can be manipulated without unintended consequences. Under-
standing the dynamics and effects of microbiome changes may 
be analogous to predicting the weather. We can see some general 
outlines that help us with the 3-day forecast, but as we attempt 
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to forecast further out, the complexity of the system overwhelms 
the available tools. Because this is a young field, as knowledge 
grows and tools become more refined, our ability to classify and 
predict will correspondingly grow.

future perspectives
The human holobiont is progressively being understood, as the 
collective microbiome and host functions are better character-
ised in health and disease, and as we assess both correlation and 
causal relationships. Efforts to standardise specimen prepara-
tion108 and analytical protocols and to increase the availability 
of the growing body of data109–111 are increasing. These tech-
nical efforts as well as robust clinical studies will improve char-
acterisation of the variation in the global human microbiomes, 
functions of redundancy, trajectories of development, effect of 
lifestyles, immigration,106 disease biomarkers, all of which will 
establish the basis to understand the progression from health to 
disease and to efficiently discover new preventive interventions 
and therapies.
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