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ABSTRACT
Objective A comprehensive analysis of the 
immune landscape of pancreatic neuroendocrine 
tumours (PanNETs) was performed according to 
clinicopathological parameters and previously defined 
molecular subtypes to identify potential therapeutic 
vulnerabilities in this disease.
Design Differential expression analysis of 600 
immune- related genes was performed on 207 PanNET 
samples, comprising a training cohort (n=72) and two 
validation cohorts (n=135) from multiple transcriptome 
profiling platforms. Different immune- related and 
subtype- related phenotypes, cell types and pathways 
were investigated using different in silico methods 
and were further validated using spatial multiplex 
immunofluorescence.
Results The study identified an immune signature of 
132 genes segregating PanNETs (n=207) according to 
four previously defined molecular subtypes: metastasis- 
like primary (MLP)-1 and MLP-2, insulinoma- like and 
intermediate. The MLP-1 subtype (26%–31% samples 
across three cohorts) was strongly associated with 
elevated levels of immune- related genes, poor prognosis 
and a cascade of tumour evolutionary events: larger 
hypoxic and necroptotic tumours leading to increased 
damage- associated molecular patterns (viral mimicry), 
stimulator of interferon gene pathway, T cell- inflamed 
genes, immune checkpoint targets, and T cell- mediated 
and M1 macrophage- mediated immune escape 
mechanisms. Multiplex spatial profiling validated 
significantly increased macrophages in the MLP-1 
subtype.
Conclusion This study provides novel data on the 
immune microenvironment of PanNETs and identifies 
MLP-1 subtype as an immune- high phenotype featuring 
a broad and robust activation of immune- related genes. 
This study, with further refinement, paves the way for 
future precision immunotherapy studies in PanNETs to 
potentially select a subset of MLP-1 patients who may be 
more likely to respond.

BACKGROUND
Pancreatic neuroendocrine tumours (PanNETs) 
are rare tumours with widely varying clinical 
behaviours. Five- year survival ranges from 60% to 
100% for the localised disease to 25% for metastatic 
disease.1 The WHO classifies PanNETs into three 
grades, with grade 3 disease having the worst prog-
nosis.2 Treatment decisions are based on the grade 
and stage of the disease. However, due to signif-
icant heterogeneity in disease behaviour, particu-
larly within grade 2 tumours, such distinctions are 
insufficient and novel approaches are required to 
provide more precise clinical management.

Significance of this study

What is already known on this subject?
 ► Very little is known about the immune 
landscape of pancreatic neuroendocrine 
tumours (PanNETs). Early data from a small 
number of patients in immune checkpoint 
inhibitor trials have demonstrated some clinical 
activity in PanNET. However, no subgroup of 
patients has been identified that is more likely 
to respond.

What are the new findings?
 ► The current study demonstrates differential 
immune- related gene expression in PanNETs 
and identified a molecular subtype, metastasis- 
like primary (MLP)-1, with enriched immune 
gene expression profiles (GEPs). Our data 
suggest this enrichment is related to MLP-1 
subtype characteristics (poor prognosis and 
increased tumour size) and GEPs associated 
with increased hypoxia, necroptosis, viral 
mimicry and stimulator of interferon gene 
pathway, resulting in activation of immune 
suppressive microenvironment via the damage- 
associated molecular pattern pathway.
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In recent years, there have been significant advances in our 
understanding of the molecular features of PanNETs.3–8 Four 
transcriptomic (gene and microRNA) PanNET subtypes were 
previously defined: metastasis- like primary (MLP)-1 (28%) and 
MLP-2 (15%), insulinoma- like (22%) and intermediate (35%).3 
These were confirmed by next- generation transcriptomic 
sequencing analysis.4

Despite our improved understanding of the molecular nature 
of PanNETs,3–8 novel therapeutic approaches for patients remain 
elusive. One prominent area for exploration is immunotherapy, 
and multiple trials of immune checkpoint blockade are under 
way.9–14 However, these studies reported only modest to low 
clinical benefit of anti- PDL1 agents thus far.

Moreover, little is known about the immune landscape of 
PanNETs to date. The majority of studies have been small and 
retrospective, considering few biomarkers.15 16 Therefore, it 
is still impossible to identify patients with PanNET who may 
benefit from immunotherapy. Thus, in this study, we performed 
detailed profiling of immune genes to understand the landscape 
of immune cell types in PanNETs and its potential to aid immu-
notherapy choices. We analysed immune- related gene expression 
in PanNET samples according to clinical parameters, gene muta-
tions, tumour stage and the previously described four molecular 
subtypes.3 As the PanNET MLP subtypes were already shown 
to be transcriptionally enriched in hypoxia- related genes,3 4 we 
also investigated the role of hypoxia/necroptosis- induced viral 
mimicry via damage- associated molecular pattern (DAMP) and 
stimulator of interferon gene (STING) pathways in inducing an 
enhanced immune- related gene expression. We further validated 
the enrichment of particular immune cell types in a subset of 
MLP subtype samples using multiplex immunofluorescence.

MATERIALS AND METHODS
PanNET patient samples and gene expression molecular 
subtypes
The sample set (n=207) consisted of three cohorts: one training 
and two validation cohorts (figure 1A). The training cohort 
(with subtype information) was our published gene expression 
microarray (18.5 K human oligo microarrays) dataset of 72 
PanNETs (GSE73338) data,17 which was also used to develop 
the PanNET molecular subtypes.3 Tumour grade, gene muta-
tions (MEN1, DAXX/ATRX and MTOR pathway genes), tumour 
volume and survival information for the training cohort were 
available. Validation cohort-1 of 109 PanNET patient samples 
were collected from Verona University Hospital (see Ethical 
approval Statement). Validation cohort 2 was a gene expression 
microarray (Affymetrix Human Gene V.1.0 ST Array) dataset of 
26 PanNETs with molecular subtypes already published by us.3

RNA sequencing (RNAseq) was performed on validation 
cohort 1 using fresh frozen PanNET samples as described in 

online supplemental methods. PanNET molecular subtypes 
for validation cohort 1 was defined using non- negative matrix 
factorisation- based unsupervised clustering of 221 subtype- 
specific genes, as described previously3 (additional details in 
online supplemental methods).

Significance analysis of microarrays (SAM)
SAM (supervised analysis) was used to identify differentially 
expressed immune- related genes between four PanNET subtypes 
in the training cohort. Six hundred immune- related genes (from 
730 immune genes from NanoString Technologies’ curated list) 
were selected as input from the training cohort. When more than 
one probe represented a gene, the highest variable probe was 
selected for that gene. For SAM, false discovery rate (FDR) was 
set to <0.05 and false calls to <1 as described.3 18 19 The list 
of significant genes from the training cohort was validated by 
applying SAM to the four PanNET subtypes in the two valida-
tion cohorts.

Shannon entropy plots of diversity versus specialisation
Shannon entropy analysis was performed on the training cohort 
to measure diversity and sample specialisation of gene expression 
for each sample as previously described.20 Diversity and speciali-
sation values were normalised between 0 and 1 as recommended 
in the R- based Bioconductor package BioQC.21 The average 
diversity and sample specialisation values for each subtype were 
then calculated.

Immune cell type genes
Expression of genes associated with various cell types across the 
innate and adaptive immune systems was analysed for all PanNET 
subtypes using a set of transcriptomic markers comprising cell 
types from Rooney et al.22

Probabilistic principal component analysis with covariates
A full description of the PPCCA method implemented in the 
exploBATCH tool is provided in online supplemental method. 
The PPCCA method23 24 was used to confirm the association 
between PanNET subtypes (primary factor), hypoxia (secondary 
factor) and DAMP gene expression data (subset of genes). The 
tool is available at https:// github. com/ syspremed/ exploBATCH.

RESULTS
The large cohorts of samples (n=207) and the design of the 
study, including different methods and analyses, are illustrated in 
figure 1A. The summary characteristics of the training cohort of 
72 PanNETs classified into four subtypes are reported in online 
supplemental table 1A, those of 109 cases of validation cohort 
1 in online supplemental table 1B and those of 26 cases of vali-
dation cohort 2 in online supplemental table 1C. The subtypes 
of validation cohort 1 (RNAseq) samples are in online supple-
mental table 1D.

PanNET molecular subtypes have distinct profiles of immune-
related gene expression
PanNET molecular subtype- based differentially expressed 
immune genes were identified using a supervised differen-
tial expression analysis of the training cohort (n=72) and 600 
immune- related genes, where subtype information was already 
provided to the statistical method, SAM, to identify differential 
genes between subtypes as described.3 This analysis identified 
132 (22% of 600) differentially expressed genes (FDR<0.05) 
between the four subtypes (online supplemental table 2A,B, 

Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

 ► This study provides novel data regarding the immune 
microenvironment of PanNETs with potential therapeutic 
implications. The MLP-1 PanNET subtype identifies tumours 
with enriched immune suppressive GEPs. This study poses 
the basis for potential clinical trials according to PanNET 
molecular subtypes to aid the development of precision 
immunotherapy in this rare disease.
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Figure 1 Differential immune gene expression and diversity associated with PanNET subtypes. (A) Schematic showing the complete cohort of 207 
PanNET samples, platforms and computational approaches used in this study. The validation cohort 1 was profiled by RNAseq, and the training and 
the validation cohort 2 was profiled using microarrays. Samples for verification of subtype- specific immune genes were selected from validation 
cohort 1 and profiled using nCounter platform from NanoString Technologies. (B) Heatmap of 132 differentially expressed immune- related genes 
according to PanNET molecular subtypes (SAM, FDR<0.05). Top bar indicates subtypes. In the rainbow bar below the heatmap, red indicates elevated 
expression; blue indicates decreased expression; and white indicates no change. (C) Proportions of differentially expressed 132 immune- related genes 
in each PanNET molecular subtype. (D) Overlap of the 132 differentially expressed immune- related genes in PanNET subtypes between the training 
cohort and validation cohorts 1 and 2. (E) Heatmap showing the mean expression of the 132 immune- related genes according to PanNET subtype 
as detected by nCounter PanCancer immune profiling panel of genes from NanoString technologies in 38 samples selected from training cohort 
and validation cohort 1. (F) Shannon entropy analysis shows the measured diversity and sample specialisation of gene expression in each PanNET 
subtype. (G,J) GSEA analysis of the training cohort’s whole gene expression profiles against the C7- immunogenic gene sets from MSigDB database,25 
performed according to PanNET subtypes: (G) MLP-1, (H) MLP-2, (I) insulinoma- like and (J) intermediate. DAMP, damage- associated molecular pattern; 
FDR, false discovery rate; GSEA, gene set enrichment analysis; MLP, metastasis- like primary; PanNET, pancreatic neuroendocrine tumour; RNAseq, RNA 
sequencing; SAM, significance analysis of microarrays.
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with overview of expression levels shown in figure 1B). MLP-1 
subtype was highly enriched for 74 of these 132 immune genes 
(56%), MLP-2 for 25 (19%) and intermediate for 21 (16%). 
Insulinoma- like samples had the lowest figure, with only 12 
(9%) immune genes (figure 1C).

The differential enrichment of the 132 immune genes in 
PanNET subtypes detected in the training cohort was validated 
using two additional cohorts (n=135), profiled using different 
technologies: validation cohort 1 (n=109, RNA- seq) and valida-
tion cohort 2 (n=26, microarrays; figure 1A and online supple-
mental figures 1A,D). One hundred twenty- seven (96%) of 132 
immune genes were found to be differentially expressed across 
PanNET subtypes in all three cohorts, highlighting the robust-
ness of these genes in discriminating the immune landscape of 
PanNET subtypes (figure 1D and online supplemental table 2C). 
Moreover, this was further confirmed by performing the gene 
expression profiling and data analysis using the nCounter plat-
form (NanoString Technologies) on a subset of 38 cases from 
validation cohort-1 (figure 1E and online supplemental figure 
1E).

Additionally, we quantified the immune- related gene enrich-
ment in PanNET subtypes of the training cohort by measuring 
diversity and specialisation of gene expression, using Shannon 
Entropy statistical analysis20 (figure 1F). Shannon diversity index 
provides an overall measure of the enrichment and abundance 
of immune gene expression in each subtype. If a greater number 
of genes are highly expressed and enriched within a subtype, 
then the diversity of that subtype will be high and vice versa. In 
contrast, the Shannon sample specialisation index will be high if 
a subset of genes—even a small subset—is highly and specifically 
expressed in a particular subtype, thus representing a charac-
teristic of that subtype. MLP-1 subtype had the highest diver-
sity of immune gene expression (with 56% of the genes highly 
expressed) and the lowest specialisation. MLP-2 had the second 
highest diversity but was the most specialised, potentially due to 
enrichment for metastases3 (online supplemental table 1A). Both 
insulinoma- like and intermediate subtypes demonstrated lower 
diversity and high specialisation. The increased specialisation for 
insulinoma- like subtype was due to the high expression of β cell- 
related genes (highlighted in online supplemental figure 1F).

To establish whether the high diversity and low specialisa-
tion of MLP-1 translated into enhanced immune pathways and 
network activity, we performed gene set enrichment analysis 
(GSEA) on the whole gene expression profiles (GEPs) of the 
training cohort against the gene set ‘C7: immunologic signatures’ 
from the MSigDB.25 Positive GSEA (enrichment) scores of gene 
sets were markedly highest in the MLP-1 subtype compared with 
insulinoma and intermediate subtypes (figure 1G–J), confirming 
that MLP-1 is enriched in multiple immune pathways. Although 
MLP-2 showed positive enrichment scores of gene sets similar 
to MLP-1, there was also a negative enrichment score of gene 
sets representing that MLP-2, unlike MLP-1, contains a balance 
between high and low enrichments of immune gene sets.

Current stratification of PanNETs is based on clinicopatho-
logical and mutational parameters.1 To check whether PanNET 
subtype- based immune profiles may provide independent addi-
tional information, we performed differential gene expression 
analysis of the training cohort (n=72)3 17 for the 600 immune- 
related genes by grouping samples according to clinicopatho-
logical parameters and mutations. Analysis according to tumour 
grade identified only 12 (2%) differentially (FDR<0.05) 
expressed genes (online supplemental figure 1G and online 
supplemental table 2D). No association was detected between 
the expression of specific genes and presence of different 

mutations (MEN1, DAXX/ATRX or mTOR pathway gene muta-
tions), tumour stage or size (online supplemental figure 1H–K 
and online supplemental table 2E–I), showing that clinico-
pathological parameters and immune profiles are independent 
features.

Enhanced immune-related gene expression in MLP-1 PanNETs 
is associated with hypoxia and necroptosis
Previously, MLP-1 was described to be less vascularised than 
other subtypes and enriched for genes associated with hypoxia 
and Hypoxia- inducible Factors (HIF) signalling.3 4 Here we 
confirmed that MLP-1, which bears poorer prognosis, featured 
a higher hypoxia gene score (based on single- sample gene set 
enrichment analysis (ssGSEA)) and larger tumour size than the 
other subtypes (figure 2A–D, online supplemental figure 2A,B 
and online supplemental table 3A–C show hypoxic gene changes 
in the training cohort; and online supplemental figure 2C,D 
represents validation cohort 1). This is consistent with the fact 
that larger tumours are more prone to hypoxia.26

Both hypoxia and immune/inflammatory responses have been 
associated with necroptosis, a form of programmed cell death.27 28 
Therefore, we investigated this association in PanNET subtypes. 
The MLP-1 subtype was primarily associated with a high (greater 
than the median value) necroptosis gene score, which in turn 
showed a trend (p=0.1) towards poorer survival (figure 2E,F 
and online supplemental table 3A and D for the training cohort; 
online supplemental figure 2E–H for the training cohort and 
validation cohort 1). Hypoxia and necroptosis scores were posi-
tively correlated (p<0.01, figure 2G). These results suggest a 
link between hypoxia, necroptosis and the enhanced immune- 
related gene expression characterising MLP-1 tumours.

Necroptotic MLP-1 tumours influence immune phenotype 
through DAMP pathway and viral mimicry
Necroptosis results in an inflammatory phenotype through 
DAMP, such as cytosolic DNA or double- stranded (ds)RNA, 
which imitate viral infection and elicit immune responses (viral 
mimicry).29–32 To investigate this connection in MLP-1, we anal-
ysed the expression of 14 key DAMP genes (unbiasedly selected 
from the entire microarray gene set) in both the training cohort 
and validation cohort 1 (n=181). Twelve of 14 genes were 
significantly enriched in the MLP-1 subtype (figure 3A and 
online supplemental table 4A for the training cohort and online 
supplemental figure 3A–C for validation cohort 1). Furthermore, 
12 of these DAMP genes were positively correlated and signifi-
cant (p≤0.05) with the necroptosis score (figure 3B and online 
supplemental figure 3D and online supplemental table 4B). This 
suggests that the MLP-1 subtype, but not the other subtypes, may 
be associated with increased DAMP genes via changes in hypoxia 
and necroptosis.

To further validate if this enrichment of DAMP genes is 
specific to the MLP-1 subtype and to evaluate if this is linked to 
hypoxic changes, we performed a machine learning- based statis-
tical association analysis on the training cohort. As this is not 
possible using simple correlation analysis, we used our published 
PPCCA method (see Methods section of online supplemental 
information). This method exploits a combination of principal 
component and multivariate regression analyses, which was 
used to model 12 DAMP GEPs as a function of both PanNET 
subtype (MLP1 vs non- MLP1) and hypoxia (high vs low) and 
test their mutual association in samples from the training cohort. 
This analysis showed that the MLP-1 subtype and hypoxia are 
statistically associated with DAMP gene (n=12) expression 
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profiles (p<0.001; figure 3C, before; online supplemental 
figure 3E). Thus, PanNET samples and DAMP GEPs were statis-
tically normalised to account for differences between MLP-1 
and other subtypes using the same method (p not significant; 
figure 3C, after). Consequently, the association between DAMP 
gene expression and hypoxia also lost significance (p>0.05, 
figure 3D). Overall, DAMP gene expression changes are signifi-
cantly associated with both MLP-1 subtype and hypoxia gene 
programme.

Among the DAMP genes, TLR3 (toll- like receptor-3) was the 
most significantly enriched in MLP-1 (FDR<0.001). High TLR3 
expression (greater than the median value) was associated with 
poorer overall survival and featured in 83% of MLP-1 samples 
(figure 3E,F, online supplemental figure 3F and online supple-
mental table 4C). This receptor is expressed by dendritic cells 
(DCs) which are antigen- presenting cells that activate T cell- 
based adaptive immune response.33 34 Accordingly, the MLP-1 
subtype was also found to be enriched for genes related to 
DCs with high DC score, which was also positively correlated 
with most of the DAMP genes (p<=0.05 for 9 of 12 genes) 
(figure 3G,H and online supplemental figure 3G and online 
supplemental table 3A). These results suggest that DAMP via 
TLR3 may affect immune- related gene expression and immune 
escape in the MLP-1 subtype.

MLP-1 subtype is enriched for T cell-mediated adaptive 
immunity and monocytes
Investigation on the function of the 74 MLP-1- specific immune 
genes (figure 1B and online supplemental table 4D) showed 

19 genes (figure 3I) that coded for proteins that play a major 
role in T- cell functioning and immune checkpoints (including 
CD274/PD- L1, PDCD1LG2/PD- L2 and LAG3) and interferon 
signalling/STING pathway (IFNAR1, IFIT2, IFI16, SPP1, IL18 
and ISG15). The second group of genes coding for proteins 
are important in macrophage/monocyte and DC functioning 
(CCRL2, TREM1/2, ANXA1 and MSR1) and antigen processing 
and presentation (PSMB8, PSMB10, PSMB9, HLA- DPA1 and 
CTSS). Other toll- like receptors that are involved in monocyte 
functioning in MLP-1 are also listed in online supplemental 
table 4D. We formally confirmed these observations by using 
enrichment analysis to identify overlaps between genes with 
increased expression in the MLP-1 subtype and the C7: immu-
nologic signatures MSigDB gene sets. Among the top 100 gene 
sets with FDR<0.01, >75% were involved in Tcell functioning, 
myeloid cell functioning or interferon signalling (online supple-
mental table 4E and the top 10 significant gene sets are shown 
in figure 3J).

In addition, we assessed PanNET subtypes for the enrichment 
of immune cell types using the specific gene sets published by 
Rooney et al.22 Differential expression analysis showed that 
14 of the 80 genes from Rooney et al had increased expres-
sion (fold change ≥1.5, FDR<0.05) in the MLP-1 subtype 
compared with the other PanNET subtypes in the training 
cohort (figure 4A,B and online supplemental table 5A). These 
included T- cell and macrophage- specific genes mainly involved 
in adaptive immunity. Accordingly, ssGSEA35 analysis for the 
immune cell type- specific genes sets confirmed the significant 
(FDR<0.05) enrichment of MLP-1 subtype for coinhibition of 

Figure 2 Association of hypoxia and necroptosis with PanNET molecular subtypes. (A) Overall survival of MLP-1 versus other subtypes. (B) Hypoxia 
score as determined by ssGSEA using the MSigDB gene set25 across PanNET subtypes of the training cohort. The orange line represents the median 
score, used as a cut- off to categorise samples into high and low for hypoxia. (C) Proportion of MLP-1 samples with a high (89%) or low (11%) ssGSEA 
hypoxia score. (D) Tumour size across the PanNET subtypes. (E) Necroptosis score as determined by ssGSEA using the MSigDB gene set25 across 
PanNET subtypes of the training cohort. The orange line represents the median score, used as a cut- off to categorise samples into high and low for 
necroptosis. (F) Proportion of MLP-1 samples with a high (78%) or low (22%) necroptosis score. (G) Correlation of hypoxia and necroptosis scores 
in PanNET samples. Colours illustrate subtypes, and the dashed ellipse highlights samples with concurrent high necroptosis and hypoxia scores. MLP, 
metastasis- like primary; PanNET, pancreatic neuroendocrine tumour; ssGSEA, single- sample gene set enrichment analysis.
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T cells, MHC class I and macrophages (figure 4C–E and online 
supplemental table 5B). We obtained similar results in the two 
validation cohorts (online supplemental figure 4A–F and online 
supplemental table 5D–E). Furthermore, there was an increase 
in M1 macrophage (proinflammatory)- specific gene expression 
in the MLP-1 subtype and a reduction in M2 macrophage (anti- 
inflammatory) genes (figure 4F,G and online supplemental table 
5C). These results suggest the costimulation of T cells through 
M1 macrophages in the MLP-1 subtype. Overall, these data 

suggest that the MLP-1 subtype features immune modulation 
via T cells, M1 macrophages and the DAMP pathway, resulting 
primarily in an immune suppressive gene expression phenotype.

Multiplex spatial immune profiling validates immune changes 
in subtypes
To validate the patterns of immune- related gene expression 
demonstrated in the PanNET subtypes, we performed multiplex 

Figure 3 Association of DAMP pathway with PanNET subtypes, hypoxia and necroptosis. (A) Heatmap of the 12 DAMP pathway genes across the 
PanNET subtype samples, demonstrating enrichment in the MLP-1 subtype. Red indicates elevated expression; blue indicates decreased expression; 
and white indicates no change. TRL3, TLR7 and CASP1 (black rectangles) are most significantly enriched in MLP-1 subtype (FDR≤0.0001). Kruskal- 
Wallis test with correction for multiple testing was used. (B) Correlation (Pearson) of DAMP pathway genes with necroptosis score across all samples. 
(C) Heatmap of 12 DAMP pathway genes (median expression across samples from each subtype) demonstrating enrichment in the MLP-1 subtype 
before and after MLP-1 subtype normalisation using PPCCA method. (D) Heatmap of 12 DAMP pathway genes (median expression across samples 
from each subtype) demonstrating enrichment in the hypoxia high group before and after MLP-1 subtype normalisation using PPCCA method. Red 
indicates elevated expression; blue indicates decreased expression; and white indicates no change. (C,D) P values represent association analysis using 
regression- based p values from PPCCA. (E) Kaplan- Meier survival plot and number of patients at risk according to low and high TLR3 expression. 
Log- rank test p value is reported. (F) Proportion of MLP-1 cases with high (83%) or low (17%) TLR3 expression. (E,F) Median score of TLR3 was used 
as a cut- off to categorise samples into high and low expressions. (G) DC score as determined by ssGSEA using MSigDB gene set25 across PanNET 
subtypes. The orange line represents the median ssGSEA score. (H) Correlation (Pearson) of DAMP pathway genes with DC score in the MLP-1 samples 
of the training cohort. (I) Heatmap showing median expression of genes associated with T- cell functioning, the STING pathway, macrophage/DC 
functioning and antigen processing/presentation across PanNET subtypes. Red indicates elevated expression; blue indicates decreased expression; 
and white indicates no change. (J) Top 10 significant enrichment analysis for genes highly expressed in MLP-1 subtype from the training cohort using 
MSigDB’s25 ‘investigational analysis’ tool and C7 gene sets. DAMP, damage- associated molecular pattern; DC, dendritic cell; FDR, false discovery rate; 
MLP, metastasis- like primary; PanNET, pancreatic neuroendocrine tumour; PPCCA, probabilistic principal component analysis with covariates; ssGSEA, 
single- sample gene set enrichment analysis; STING, stimulator of interferon gene.
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immunofluorescence using available samples and gene expres-
sion data (n=28, no insulinoma- like samples). The number of 
cells positive for CD68 (macrophage marker), CD8 (cytotoxic 
T cell marker), FOXP3 (T- regulatory cell marker) and CD20 
(B cell marker), per megapixel of tumour tissue, were counted 
(figure 5A).

The MLP-1 subtype demonstrated a higher count of CD68 
positive cells compared with Intermediate and MLP-2 subtypes 
(FDR<0.05) (figure 5B), consistent with increased expression of 
CD68 gene in MLP-1 subtype in validation cohort-1 (figure 5C). 
There was no significant difference in CD8 or FOXP3 staining 
across the three subtypes in keeping with the lack of specific 
enrichment in gene expression data (online supplemental table 
6). These immunofluorescence spatial and protein expression 
findings are consistent with gene expression data.

Potential immunotherapeutic opportunities using patients 
with PanNET with MLP-1 subtype
To assess the potential immunotherapeutic significance of 
the MLP-1 subtype, we verified the expression of known and 

potential immunotherapy targets across the PanNET subtypes, 
including PD- L1 expression, which has already been used 
as an inclusion criterion for immunotherapy clinical trials in 
PanNETs.10 PD- L1 (CD274) and PD- L2 were significantly 
(FDR<0.2) highly expressed in MLP-1 (figure 6A,B). Additional 
inhibitory immune checkpoints, which resulted to be enriched in 
the MLP-1 subtype, included LAG3, IDO1, and C10orf54 (V- do-
main Ig suppressor of T- cell activation, figure 6C–E).

The T cell- inflamed GEP is a set of 18 genes whose enrich-
ment has been reported to predict response to PD-1 blockade 
in several tumour types.36 We thus analysed this as a signature 
(T- cell GEP) score, and there were increased scores in MLP-1 
versus the other subtypes in all the three cohorts (figure 6F and 
online supplemental figure 4G,H).

To further validate these results, we compared our data to 
melanoma, where immune therapy is known to be successful. We 
used a publicly available dataset—GSE1560537—and combined 
the two datasets after batch correcting the differences between 
profiling platforms. There was a significantly high expression 
of PDL-1 and PDL-2 genes and T- cell GEP scores in metastatic 

Figure 4 Immune cell type landscape in PanNET subtypes. (A) Differential expression of immune cell type- specific genes in MLP-1 versus other 
subtypes. FDR values were computed on the training cohort based on t- test. Pink dots highlight 14 overexpressed genes in MLP-1 subtype (fold 
change≥1, FDR<0.05). (B) Heatmap of the 14 overexpressed immune cell type- specific genes across the four PanNET subtypes. Genes with a fold 
change >2 are highlighted (*). The immune cell types associated with the specific genes are displayed on the right. Top bar represents PanNET 
subtypes. In the rainbow bar below the heatmap, red indicates elevated expression; blue indicates decreased; and white indicates no change. (C–E) 
Enrichment scores (ssGSEA) of immune cell type- specific gene sets, namely,(C) macrophages, (D) coinhibition T cells,and (E) MHC class I across 
PanNET subtypes (FDR<0.05 based on Kruskal- Wallis test). (F,G) Heatmaps showing median expression of genes associated with (F) M1 and (G) 
M2 macrophages across PanNET subtypes in the training cohort. Red indicates elevated expression; green indicates decreased expression; and 
black indicates no change. FDR, false discovery rate; IFN, interferon; MHC, major histocompatibility complex; MLP, metastasis- like primary; PanNET, 
pancreatic neuroendocrine tumour; ssGSEA, single- sample gene set enrichment analysis.
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melanoma compared with primary melanoma and normal skin. 
Similarly, there was a significant increase in the expression of 
these genes in MLP-1 compared with the other subtypes of 
PanNET. Thus, PDL1, PDL2 and T- cell GEP scores in the MLP-1 
subtype were similar to metastatic and primary melanoma 
samples (online supplemental figure 5A–C).

DISCUSSION
To our knowledge, this report describes, for the first time, the 
global immune- related gene expression of PanNETs in one of the 
largest sets of patients. Four molecular PanNET subtypes based 
on gene expression had previously been defined: MLP-1, MLP-2, 
insulinoma- like and intermediate.3 These subtypes were used as 
a starting point to explore immune- related gene expression.

Our results, consistent in both the training cohort (n=72) 
and two validation cohorts (n=135), can be summarised as 
follows: (1) the four PanNET molecular subtypes3 identified 
groups of tumours with different immune gene expression, and 
~20% of cases exhibited the MLP-1 subtype, which featured 
the highest and more diverse immune- related gene expression; 
(2) PanNETs clinical parameters, including grade, tumour stage 
and size, or specific genetic mutations, did not associate with 

immune gene expression, suggesting that molecular subtype- 
based immune profiles may provide independent and additional 
information; (3) the MLP-1 phenotype (demonstrated robustly 
using the machine learning approach) featured a close associa-
tion between its known hypoxic phenotype,3 4 necroptosis and 
signalling through DAMP and the STING pathway, promoting 
an immune enhanced expression profile; (4) accordingly, 
immune cell type- specific gene expression analysis showed an 
enrichment in M1 pro- inflammatory macrophages and DCs, 
mirrored by enhanced expression of TLRs and MHC class I; (5) 
this increased macrophages was confirmed using spatial profiling 
and pan- macrophage marker CD68; and (6) as expected from its 
enhanced immune gene expression, the MLP-1 subtype showed 
overexpression of PD- L1, PD- L2 and other markers of sensi-
tivity to immunotherapy, including the T cell GEP signature.36 
Overall, our study provides insights into the heterogeneity of the 
immune microenvironment in PanNETs and highlights various 
potential immunotherapeutic targets.

The MLP-1 subtype is enriched for genes involved in hypoxia 
and HIF signalling.3 4 These have been linked to many aspects of 
immunity in the tumour microenvironment, including the upreg-
ulation of checkpoints such as PD- L1.38 Hypoxic cell damage was 
associated with necroptosis and signalling through DAMP and 
the STING pathways. These signalling avenues reportedly lead to 
the production of type I or II interferons and recruitment/induc-
tion of M1 when combined with TLR stimulation30 31 39 40; all 
demonstrated to be enriched in the MLP-1 subtype. DAMP path-
ways provide links between cell damage, danger signals such as 
cytosolic DNA or dsRNA (sensed by TLR3) and adaptive immune 
response.30 31 While much remains to be learnt about these path-
ways and their potential to either promote or inhibit tumour 
progression, our data suggest that the intrinsic MLP-1 characteris-
tics (including progenitor origin, prometastatic, stroma- rich and/
or epithelial–mesenchymal transition phenotypes) in association 

Figure 5 Multiplex immunofluorescence validates cell type 
differences across PanNET subtypes. (A) Representative multiple 
immunofluorescence images demonstrating protein expression of CD68 
(macrophages), FOXP3 (Tregs), CD8 (cytotoxic T cells), CD20 (B cells) and 
pan- CK (cancer cells) in MLP-1 (left) and intermediate (right) samples. 
Nuclei are stained with DAPI. Bars represent ×20 magnification. (B) 
The median score of CD68 immunofluorescence staining (cell type/
megapixel) computed from multiple regions of multiple slides for 30 
PanNET samples and plotted for subtypes. (C) Gene expression levels of 
CD68 across PanNET subtypes in validation cohort 1. CK, cytokeratin; 
DAPI, 4′,6- diamidino-2- phenylindole; FDR computed by Kruskal- Wallis 
test after multiple testing corrections. FDR, false discovery rate; MLP, 
metastasis- like primary; Treg, T- regulatory cell.

Figure 6 Key immunotherapy target genes overexpressed in the MLP-
1 subtype. (A–E) Expression (log2) levels of inhibitory checkpoint (PDL1, 
PD- L2, LAG3, IDO1 and C10orf54) genes in the training cohort. (F). T 
cell- inflamed GEP (to predict potential response to anti- PD1 treatment) 
for the training cohort. Expression (mean) data for 14 of the 18 relevant 
genes were available. FDR (after multiple testing correction) or p value 
computed by Kruskal- Wallis test. FDR, false discovery rate; GEP, gene 
expression profile; MLP, metastasis- like primary.
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hypoxia drive enhanced expression of DAMP genes. The latter 
in turn affects the immune landscape in this subtype. Conversely, 
a consistent fraction of intermediate subtype PanNETs featured 
enhanced hypoxia and necroptosis signalling without DAMP 
activation and with poor enrichment of immune cell- specific 
hallmarks. On the other hand, insulinoma- like samples showed 
low hypoxia and necroptosis, with increased expression of β 
cell- specific genes and a small number of immune genes. While 
this potentially relates insulin signalling and immune response in 
insulinoma, it is beyond the scope of the present study.

Moreover, DCs, neutrophils and TLRs were also enriched in 
the MLP-1 subtype. Tumor- associated DCs have been described 
as dysfunctional, causing upregulation of immune checkpoints, 
an increase in regulatory T cells and decreased overall survival in 
various tumors.41 As both DC- targeted and TLR targeting treat-
ment strategies are in development,42 this is another area which 
warrants consideration in MLP-1 patients.

The enrichment of genes involved in the above immune- 
related pathways and the reported induction of PD- L1 by M1 
macrophages in other tumors43 provided a rationale to investi-
gate whether MLP-1 subtype patients are more likely to benefit 
from checkpoint inhibitor therapies than other patients.

Recent clinical trials in patients with neuroendocrine tumour 
(NET) have used PD- L1 positivity as an inclusion criterion for 
immunotherapy,10 as PD- L1 (CD274) expression in gastro- 
oesophageal NETs was associated with tumour grade and 
survival.16 44 45 In our study, PD- L1 was differentially expressed 
across PanNET subtypes, with the MLP-1 subtype demon-
strating the highest expression, again suggesting that checkpoint 
inhibitor therapy may be appealing in this subtype. That said, 
PD- L1 alone has been shown to be an insufficient biomarker 
of response to checkpoint blockade, highlighting the need for 
more refined and reliable predictive biomarkers for personalised 
immunotherapy treatments.46

These observations led us to consider other putative predictive 
biomarkers according to the immune profiles of our PanNET 
subtypes, including PD- L2 and T- cell GEP. The latter is based on 
18 genes coexpressed with interferon-γ and has been reported 
to predict response to PD-1 blockade in a number of different 
solid tumors.36 47 Again, the MLP-1 subtype showed enhanced 
expression of these markers. We also evaluated the adverse 
prognostic factor FOXP3 and did not find any change in T- reg-
ulatory cell marker FOXP3 by either immunofluorescence or 
gene expression (figure 5A and online supplemental figure 5D), 
which corroborates with a published report that FOXP3 is low 
expressed in PanNETs.48

Clinical trial data are still relatively limited regarding immuno-
therapy for PanNETs, but recent reports suggest only a fraction 
of PDL-1- positive tumours may actually respond to immuno-
therapy.49 While this can be partially overcome by additional 
markers such as GEP or PDL-2,47 other unknown factors may be 
involved as predictors of response to immunotherapy. Therefore, 
our MLP-1 subtype, while correlating with the aforementioned 
described predictors, also included other characteristics, such as 
a broad activation of immune related genes, higher tumour stage 
and grade and an overall more aggressive phenotype. Hence, the 
selection of patients bearing the MLP-1 subtype may be a prom-
ising way to increase the success rate.

Despite PanNET being a rare tumour type, we have analysed 
207 cases. We acknowledge that our study used only resected 
cases and note the importance of studying dynamic immune 
changes in PanNETs. That said, our study poses the basis for 
further prospective analysis of primary and metastatic disease 
at different time points in patients undergoing immunotherapy.

CONCLUSION
We demonstrate that the MLP-1 subtype of patients with 
PanNET has an enhanced immune phenotype, associated with 
increased tumour size, hypoxia, necroptosis and DAMP/STING/
TLR pathway activation. There is a complex interplay between 
tumour and immune cells in MLP-1 PanNETs. The data we 
present here may serve as the springboard for further investi-
gation of this interplay. In the meantime, our data suggest that 
immunotherapy (alone or in combination with other treatments) 
in selected PanNET (MLP-1) patients may be clinically beneficial.
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