Effect of green-Mediterranean diet on intrahepatic fat: the DIRECT PLUS randomised controlled trial

Anat Yaskolka Meir,1 Ehud Rinott,1 Gal Tsaban,1,2 Hila Zelicha,1 Alon Kaplan,1 Philip Rosen,3 Ilan Shelef,3 Ilan Youngster,4 Aryeh Shalev,2 Matthias Blüher,5 Uta Ceglarek,6 Michael Stumvoll,5 Kieran Tuohy,7 Camilla Diotallevi6,7,8 Urska Vrhovec,8 Frank Hu,9,10,11 Meir Stampfer,9,10,11 Iris Shai1,9

ABSTRACT

Objective To examine the effectiveness of green-Mediterranean (MED) diet, further restricted in red processed meat, and enriched with green plants and polyphenols on non-alcoholic fatty liver disease (NAFLD), reflected by intrahepatic fat (lHF) loss.

Design For the DIRECT-PLUS 18-month randomized clinical trial, we assigned 294 patients with abdominal obesity/dyslipidaemia into healthy dietary guidelines (HDG), MED and MED-weight-loss diet groups, all accompanied by physical activity. Both isocaloric MED groups consumed 28 g/day walnuts (+440 mg/day polyphenols provided). The green-MED group further consumed green tea (3–4 cups/day) and Mankai (a Wolffia globosa aquatic plant strain; 100 g/day frozen cubes) green shake (+1240 mg/day total polyphenols provided). IHF% 18-month changes were quantified continuously by proton magnetic resonance spectroscopy (MRS).

Results Participants (age=51 years; 88% men; body mass index=31.3 kg/m²; median IHF%=6.6%; mean=10.2%; 62% with NAFLD) had 89.8% 18-month retention-rate, and 78% had eligible follow-up MRS. Overall, NAFLD prevalence declined to: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED), p=0.012 between groups. Despite similar moderate weight-loss in both MED groups, green-MED group achieved almost double IHF% loss (~38.9% proportionally), as compared with MED (~19.6% proportionally; p=0.035 weight loss adjusted) and HDG (~12.2% proportionally; p<0.001). After 18 months, both MED groups had significantly higher total plasma polyphenol levels versus HDG, with higher detection of Naringenin and 2,5-dihydroxybenzoic-acid in green-MED. Greater IHF% loss was independently associated with increased Mankai and walnuts intake, decreased red/processed meat consumption, improved serum folate and adipokines/lipids biomarkers, changes in microbiome composition (beta-diversity) and specific bacteria (p<0.05 for all).

Conclusion The new suggested strategy of green-Mediterranean diet, amplified with green plant-based proteins/polyphenols as Mankai, green tea, and walnuts, and restricted in red/processed meat can double IHF loss than other healthy nutritional strategies and reduce NAFLD in half.

Trial registration number NCT03020186.

Significance of this study

What is already known on this subject?

► Non-alcoholic fatty liver disease (NAFLD), a condition affecting 25% of the world population, is reflected by increased intrahepatic fat (IHF)% (~5%) and is associated with elevated liver enzymes, insulin resistance, type 2 diabetes and cardiovascular risk, as well as with decreased gut microbiome diversity and dysbiosis.

► Currently, an evidence-based treatment strategy consists of general weight-loss through lifestyle interventions.

What are the new findings?

► In this trial, we introduce a new concept of a green Mediterranean diet, further enriched with specific green polyphenols as Mankai, green tea, and walnuts, and restricted in red and processed meat that might lead to significantly double intrahepatic fat loss, as compared with other healthy nutritional strategies.

How might it impact on clinical practice in the foreseeable future?

► Results from this study may suggest an improved dietary protocol to reduce NAFLD.

INTRODUCTION

Intrahepatic fat (IHF) accumulation, a result of intracellular triglyceride (TG) deposition in the liver, is promoted by bodily adipose tissue dysfunction and insulin resistance.1 IHF that exceeds 5%, in the absence of alcohol abuse, defines non-alcoholic fatty liver disease (NAFLD).2 IHF accumulation is associated with elevated liver enzymes, insulin resistance, type 2 diabetes, cardiovascular risk and extrahepatic malignancies.2,3 In recent years, the gut microbiome was suggested to have a pivotal role in NAFLD pathogenesis. This association is presumably due to the modulation of hepatic carbohydrate and lipid metabolism, with dysbiosis, that is, aberrant composition of the microbiome community, being a hallmark of the disease.4,5 NAFLD affects about a quarter of the world population6 and can progress to the development of steatohepatitis, liver-cirrhosis and hepatocellular carcinoma.6,7
current evidence-based treatment strategy consists of weight-loss through lifestyle interventions, without specific dietary recommendations, although strong evidence points toward recommending the Mediterranean (MED) diet. MED diet, relatively rich in plant food sources, has been associated with reduced prevalence of NAFLD, improves cardiometabolic and cardiovascular biomarkers, and reduces all-cause mortality.

Polyphenols, secondary metabolites of plants with antioxidant properties, are involved in the defence against ultraviolet radiation and pathogenic insults in the plants and have been suggested, in humans, to be protective against several malignancies, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases, as well as reducing hepatic steatosis. The main groups of polyphenols are classified by the number of phenol rings they contain and structural elements and include phenolic acids, flavonoids, stilbenes and lignans. The MED diet has a relatively high content of polyphenols. In the traditional Spanish MED diet, the mean polyphenol intake was estimated to be between ~2500 and 3000 mg/day as compared with ~1000 mg/day in a western-style diet. We, and others, reported a greater decrease in NAFLD with MED diet, as compared with a low-fat diet. Adherence to vegetarian and plant-based diets was also associated with a lower incidence of NAFLD.

METHODS
Study design
The 18-month DIRECT-PLUS trial was initiated in May 2017 and was conducted in an isolated workplace (Nuclear Research Center Negev, Dimona, Israel), where a monitored lunch was provided. Most of the clinical and medical measurements and lifestyle-intervention sessions, were performed at the workplace’s medical department. Of the 378 volunteers, 294 met the inclusion criteria of age >30 years with abdominal obesity (waist circumference (WC): men >102 cm, women >88 cm) or dyslipidaemia (TG >150 mg/dL and high-density lipoprotein (HDL) cholesterol ≤40 mg/dL for men, ≤50 mg/dL for women). Exclusion criteria are detailed in online supplemental methods 1.

Randomisation and intervention
All eligible participants who signed consent to participate in the trial and completed the baseline measurements were randomised in a 1:1:1 ratio, stratified by gender and work site (to ensure equal workplace-related lifestyle features between groups), into one of the three intervention groups: healthy dietary guidelines (HDG), MED, green-MED, all combined with physical activity (PA) accommodation. The outline of lifestyle interventions is presented in online supplemental table 1.

The interventions were initiated simultaneously, and participants were aware of their assigned intervention (open-label protocol). All the participants received free gym memberships and educational sessions to engage in moderate-intensity PA, 80% of which included an aerobic component (online supplemental methods 2).

In addition to PA, participants received standard nutritional counselling to promote a healthy diet and to achieve a similar intervention intensity.

In addition to PA, participants were instructed to adopt a calorie-restricted MED diet as described in our previous trials: DIRECT and CENTRAL. The MED diet assigned was rich in vegetables, with poultry and fish replacing beef and lamb. The diet also included 28 g/day of walnuts (containing 440 mg polyphenols/day; gallic acid equivalents (GAE), according to United States Department of Agriculture (USDA) Phenol-Explorer: http://phenol-explorer.eu/food-processing/foods, including, mostly, ellagitannins, ellagic acid and its derivatives.

In addition to PA and the provision of 28 g/day walnuts, the green-MED diet was restricted in processed and red meat and was richer in plants and polyphenols. The participants were guided to further consume the following provided items: 3–4 cups/day of green tea and 100 g/day of frozen Wolffiia globosa (Mankai strain) plant frozen cubes, as a green shake replacing dinner. Both green tea and Mankai together provided additional daily intake of 800 mg polyphenols (GAE), according to Phenol-Explorer and Eurofins lab analysis, including catechins (flavonoids) beyond the polyphenol content in the prescribed MED diet. Both the MED and green-MED diets were equally calorie-restricted (1500–1800 kcal/day for men and 1200–1400 kcal/day for women). A detailed description of the provided polyphenols is available in online supplemental methods 3.

Details regarding the lifestyle interventions and motivation techniques are provided in online supplemental methods 4. All the above polyphenols food sources (Mankai, green tea and walnuts) were provided free of charge and monitored at the on-site clinic.

Outcome measures
IHF% was assessed at baseline and after 18 months using H-MRS. Localised, single-voxel proton spectra were acquired using a 3.0T magnetic resonance scanner (Philips Ingenuity, Best, The Netherlands). The measurements were taken from the frontal part of the right lobe, with a location determined individually for each subject using a surface, receive-only phased-array coil (full protocol is available in online supplemental methods 5). Data were analysed using M nova software (MestreLab Research, Santiago de Compostela, Spain) by an experienced physicist blinded to the intervention groups, who also performed visual quality control of fitted spectra. The total hepatic fat fraction in the image was determined as the ratio between the sum of the area under all fat divided by the sum of the area under all fat and water peaks. IHF colour images were produced using PRIDE software (by Philips).

Anthropometric parameters (ie, weight and WC) and blood biomarkers were taken at baseline, after 6 and 18 months of intervention. Assessment of nutritional intake and lifestyle habits was performed using self-reported food frequency questionnaires administered through a computer at baseline, after 6 months, and at the end of the trial. Serum folate was measured by the ECLA competitive approach and was used as a marker for green leaf consumption. We used plasma samples to assess polyphenol levels. All outcomes, including laboratory
methodology and microbiome analysis, are further detailed in online supplemental methods 6.

Statistical analysis
The primary outcomes of the DIRECT PLUS study were 18-month changes in IHF%, visceral adipose tissue (VAT), and adiposity (Flow chart of the study is presented in figure 1). Preliminary results indicate that 54% of the participants shared at baseline the top tertile of both—VAT and IHF levels and that after the 18-month intervention, 64% shared the top tertile of greater decline in both. A different report will be dedicated to complete VAT analysis. In the current study, we primarily aimed to assess the effect of the intervention on NAFLD, as evaluated by an 18-month change in IHF% (expressed as a percentage of total liver fat). Second, we evaluated the association of change in liver fat with the change in anthropometric parameters (weight, WC, blood pressure (BP)), blood biomarkers, cardiovascular risk scores, and specific food intake components related to the green-MED diet. Continuous variables are presented as means±SD or as medians and 25th, 75th percentile. Nominal variables are expressed as numbers and/or percentages. The Kolmogorov-Smirnov test was used to determine whether variables were normally distributed. NAFLD cut-off was set to 5% IHF, an acceptable cut-off for NAFLD initial diagnosis with radiological imaging techniques.2 As a 5.56 cut-off is also appropriate for NAFLD diagnosis,3 we performed a sensitivity analysis with this cut-off, which yielded similar results. Differences between time points were tested using the Paired sample t-test or Wilcoxon test. Differences between groups were tested using analysis of variance (ANOVA), Kruskal-Wallis test or χ² test. Ln transformations were applied when necessary to achieve normal distribution. Correlations were tested using Spearman or Pearson correlation. Kendall Tau correlation was used to examine p-of-trend. Multiple comparisons were addressed using the Tukey post hoc test (for ANOVA) and Bonferroni correction (for Kruskal-Wallis). For adjustments and interaction models, we used general and generalised linear regression models (with the specific adjustments detailed in the results). Of 294 MRI scans of the participants, 269 were eligible for IHF% analysis at baseline due to technical reasons. Intention to treat (ITT) analysis was carried according to our previous trials: 18-month analysis for the primary outcome of IHF% included all 269 participants was conducted by imputing the missing observations for 38 individuals with missing data at 18 months by the multiple imputation technique,31 wherein the following predictors were used in the imputation model: age, sex, baseline weight and WC at 18 months.32 For missing data of body weight and WC, we used the last observation carried forward for 294 participants.32 Sample size calculation and microbiome statistical analysis are available in online supplemental methods 7 and 8. Statistical analysis was performed using SPSS (V.25.0) and R (V.3.6.0). Statistical significance was set at a two-sided alpha of 0.05.

RESULTS
Baseline characteristics
The mean age of the participants was 51 years. 88% were men, with a mean body mass index (BMI) of 31.3 kg/m². Baseline characteristics are presented in table 1. IHF% (ranged from 0.1% to 44.6%, median=6.6%, mean=10.2%) and NAFLD (IHF>5%) prevalence (62%), did not significantly differ between the three intervention groups (p>0.05 for all). The participants who did not have valid MRI scans at baseline (n=25), did not differ significantly from participants with valid scans (n=269) in terms of gender distribution (p=0.99) age (p=0.75), baseline weight and WC (p=0.44). The participants’ median alcohol intake was 0.26 servings/day for men and 0.15 servings/day for women (correspond to 3.64 g/day and 2.1 g/day, respectively32). Lifestyle patterns, including daily alcohol and medication usage, were similarly distributed across the groups (online supplemental table 2).

Adherence to the intervention
The retention rate was 98.3% after 6 months and 89.8% after 18 months. 78% had eligible follow-up MRS scan. Dropout reasons were confined to a lack of motivation and medical reasons
unrelated to the study. Overall, the 18-month dropout rate was not statistically different between the intervention groups (p=0.26). Baseline weight, WC and age of those 30 participants who withdrew during the trial did not differ significantly from the 264 completers (p=0.4 for gender distribution, p=0.38 for age, p=0.63 for baseline weight, p=0.51 for baseline WC). No significant difference in PA intensity level (median=28.8 MET/week) was observed between the intervention groups after 18 months of intervention (p=0.28). As previously reported21, the green-MED diet was distinguished in higher green tea and Mankai green shake intake, along with reduced red meat and poultry intake, as compared with the MED diet (p<0.05 for all comparisons between MED groups). Further information regarding adherence and macronutrient composition is reported in online supplemental results 1 and online supplemental tables 3 and 4.

18-month changes in markers of adherence to intervention: serum folate and plasma polyphenols

Serum folate levels increased across the three intervention groups (p=0.03). The green-MED group participants increased their serum folate level by 1.1 (−0.5, 2.6) ng/dL (p<0.001 vs baseline; median change (25th, 75th percentiles)), an increase that was significantly higher compared with the HDG group (0.4 (−1.0, 1.5) ng/dL, p=0.01 between groups).

Overall, at the end of the intervention, the green-MED and MED groups demonstrated significantly higher levels of total

| Table 1 Baseline characteristics of the DIRECT PLUS participants* |
|------------------|------------------|------------------|------------------|------------------|------------------|
| | Entire (n=294) | HDG (n=98) | MED (n=98) | Green-MED (n=98) | P value between groups† |
| IHF content, %‡ | 6.6 (3.5, 15.1) | 7.0 (3.4, 15.1) | 5.9 (3.8, 14.9) | 7.7 (3.1, 17.8) | 0.62 |
| NAFLD (IHF>5%), %‡| 262 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.97 |
| Obese§, % | 264 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.13 |
| Diabetic¶, % | 10.9 | 10.3 | 9.3 | 13.3 | 0.65 |
| Anthropometric | | | | | |
| Age, years | 51.1±10.5 | 51.1±10.6 | 51.6±10.4 | 50.5±10.8 | 0.76 |
| Men, number (%) | 259 (88.1) | 86 (87.8) | 86 (87.8) | 87 (88.1) | 0.97 |
| BMI, kg/m²+BMI | 31.3±4.0 | 31.2±3.8 | 31.3±4.0 | 31.3±4.2 | 0.99 |
| Weight, kg | 263 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.38 |
| Waist circumference, cm | 109.7±9.5 | 109.9±10.3 | 110.0±9.5 | 109.3±8.7 | 0.86 |
| Men | 264 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.97 |
| Women | 263 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.97 |
| Diastolic-BP, mm Hg | 263 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.56 |
| Systolic-BP, mm Hg | 263 (88.1) | 263 (87.8) | 261 (87.8) | 264 (88.1) | 0.56 |
| Blood biomarkers | | | | | |
| HDL, mg/dL | 46.0±11.7 | 45.4±11.5 | 47.1±11.1 | 45.4±12.4 | 0.51 |
| Men | 44.3±10.2 | 43.4±9.9 | 46.1±10.1 | 43.3±10.7 | 0.13 |
| Women | 58.6±13.9 | 59.6±12.6 | 54.4±15.7 | 62.0±13.4 | 0.42 |
| LDL, mg/dL | 125.7±30.1 | 126.8±32.3 | 127.0±31.0 | 123.3±29.2 | 0.64 |
| TGHDL ratio** | 3.0 (2.0, 4.5) | 3.1 (2.0, 4.8) | 2.9 (2.0, 4.6) | 2.9 (2.0, 4.3) | 0.53 |
| Cholesterol/HDL ratio | 4.4±1.3 | 4.4±1.2 | 4.3±1.3 | 4.4±1.4 | 0.82 |
| Fasting glucose, mg/dL,** | 98.4 (92.3, 106.3) | 98.4 (91.9, 105.4) | 98.1 (92.4, 106.3) | 98.9 (92.4, 107.8) | 0.86 |
| Insulin, µU/mL** | 13.0 (9.7, 18.9) | 13.0 (9.7, 18.9) | 13.3 (10.2, 17.8) | 12.9 (9.3, 18.1) | 0.33 |
| HOMA IR** | 3.2 (2.3, 4.6) | 3.1 (2.2, 4.4) | 3.2 (2.5, 4.4) | 3.2 (2.2, 4.5) | 0.53 |
| hsCRP, mg/L** | 2.5 (1.5, 4.2) | 2.3 (1.3, 4.4) | 2.6 (1.6, 4.3) | 2.4 (1.3, 4.2) | 0.58 |
| Liver enzymes and adipokines | | | | | |
| ALT, U/L | 34.9±16.8 | 34.9±20.1 | 33.1±12.5 | 35.7±16.8 | 0.56 |
| AST, U/L | 25.6±7.7 | 25.9±8.6 | 25.2±6.5 | 25.8±7.9 | 0.91 |
| ALT AST ratio | 1.3±0.4 | 1.4±0.4 | 1.3±0.4 | 1.4±0.4 | 0.60 |
| ALKP, mg/dL | 74.2±19.3 | 73.7±17.3 | 73.4±18.2 | 75.4±22.1 | 0.98 |
| Chemerin, ng/mL | 207.9±43.5 | 205.9±44.1 | 208.5±43.6 | 209.4±43.1 | 0.81 |
| FGF 21, pg/mL | 203.0±142.2 | 196.8±125.3 | 201.8±162.9 | 210.4±136.7 | 0.76 |
| Leptin, ng/mL | 14.3±12.0 | 13.7±12.2 | 15.0±12.3 | 14.3±11.5 | 0.44 |

*Values are presented as mean±SD for continuous variables (unless indicated otherwise), and as number and/or % for categorical variables.
†P values according to ANOVA/Kruskal-Wallis test for continuous variables and χ² for categorical variables.
‡Of 269 available H-MRS.
§BMI ≥30 kg/m².
¶Presence of diabetes was defined for participants with baseline fasting plasma glucose levels ≥126 mg/dL or haemoglobin-A1c levels ≥6.5% or if regularly treated with oral antihyperglycaemic medications or exogenous insulin.
**Values presented as median (p25, p75).
***Presence of diabetes was defined for participants with baseline fasting plasma glucose levels ≥126 mg/dL or haemoglobin-A1c levels ≥6.5% or if regularly treated with oral antihyperglycaemic medications or exogenous insulin.
††Values presented as median (p25, p75).
‡‡ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; BP, blood pressure; FGF, fibroblast growth factor; HDG, healthy dietary guidelines; HDL, high-density lipoprotein; H-MRS, proton magnetic resonance spectroscopy; hsCRP, high sensitivity C reactive protein; IHF, intrahepatic fat; HOMA IR, homeostatic model assessment of insulin resistance; LDL, Low-density lipoprotein; MED, Mediterranean; NAFLD, non-alcoholic fatty liver disease; TG, triglycerides.
polyphenols (0.47±0.4 mg/L for both) as compared with the HDG group (0.35±0.4 mg/L; p<0.05 for both MED vs HDG). The following polyphenols were differentially detected between the groups at the end of the intervention: 2-5-dihydroxybenzoic acid (HDG: 11.9%, MED: 37.4%, green-MED: 50.7%; p<0.001) and Naringenin (HDG: 4.4%, MED: 30.4%, green-MED: 65.2%; p=0.001).

18-month changes in IHF, weight and WC

After 18 months of lifestyle intervention, weight loss (figure 2A) and WC reduction in both green-MED (−3.7±6.3 kg, −6.1±6.2 cm; p<0.001 vs baseline for both) and MED (−2.7±5.6 kg, −5.3±5.7 cm; p<0.001 vs baseline for both) diets were similar, and were higher than the reductions achieved in the green-MED group versus the MED group (p=0.001 for both). This significant difference was observed after we added PA and energy intake to the statistical model (p=0.047). Adjustment for VAT change, instead of weight-loss, did not change the results observed (green-MED vs HDG: p=0.006; green-MED vs MED: p=0.029). Further subgroup analysis of IHF% change by the degree of weight loss/VAT reduction is presented in online supplemental figure 1. By the end of the trial, the prevalence of NAFLD reduced from 62% to the following distribution between intervention groups: 54.8% (HDG), 47.9% (MED) and 31.5% (green-MED; p=0.012 between groups). ITT analysis for the between-group differences (figure 2B) yielded similar results. Further adjustment for weight loss resulted in a significant difference between the two MED diets (p=0.024). A comparison between the per-protocol changes and ITT techniques is presented in online supplemental figure 2. Illustrative MRI of the 18-month changes in the two MED diets are presented in figure 2C. Further analysis of 18-month IHF% changes by BMI, age, NAFLD, sex, type 2 diabetes or metabolic syndrome criteria subgroups is presented in online supplemental figure 3.

Since some participants were included in a substudy related and parallel to this trial, we also examined the IHF% change between the substudy intervention groups, with no significant difference observed.

‘Green component’ and IHF loss

To clarify why the green-MED diet was more successful than the MED diet in IHF reduction, we further examined specific food components. IHF% change was inversely correlated with serum folate change (r=−0.16, p=0.02). Greater reduction in IHF was observed in participants in the top serum folate change (increase) tertile versus lowest serum folate change, and among participants who reduced red and processed meat (p<0.05 for
all, figure 3). An interaction was observed for red/processed meat and serum folate with the green-MED diet, that remained significant after further adjustments for age, sex, and either baseline IHF or weight. Further analysis of the reduction in IHF% and diet components is presented in online supplemental figure 4.

Increased intake of both Mankai and walnuts, as reported by the participants, was significantly associated with greater IHF% loss (p<0.05 for all; figure 3). Adjustment for either weight change or baseline IHF level did not materially attenuate the associations (p<0.05 between extreme tertiles). Of note, change in total plasma polyphenols was marginally correlated with IHF% change (r=-0.12, p=0.09).

Associations of IHF with cardiometabolic markers

At baseline, IHF% levels were correlated with anthropometric parameters, glycaemic, lipid and liver-related markers (p<0.05 for all; online supplemental figure 5). Further adjustment for age, sex and baseline weight did not affect most of the observed associations.

Eighteen-month weight and WC loss were significantly associated with IHF% loss (table 2). IHF% reduction was associated with a decline in diastolic BP, TG/HDL ratio, cholesterol/HDL ratio, fibroblast growth factor 21 (FGF21) and chemerin (p<0.05 for all biomarkers, consistently in all three statistical models). Eighteenth-month differences in liver-related blood biomarkers between groups are presented in online supplemental figure 6.

Intrahepatic fat and the gut microbiome

We next addressed the potential role of the gut microbiome in the observed association between lifestyle intervention and IHF% reduction.

At baseline, IHF% levels were significantly associated with taxonomic composition, as assessed by global structure Permutational analysis of variance (PERMANOVA, p=0.008), and by the first principal coordinate (PCo) across IHF% tertiles (figure 4A). Concordantly, 18-month change in IHF was found to be associated with the change in the global composition, assessed by the log2 change of all operational taxonomic units (OTUs) (PERMANOVA, p=0.037). Aiming to determine whether the microbiome’s composition change had a mediating role in the association between lifestyle intervention and IHF loss, we sought the PCo most highly correlated with IHF change (PC5; r=0.25, p=0.001; figure 4B, online supplemental figure 7), and evaluated to what extent was it affected by lifestyle intervention. PCo #5, being a surrogate for the compositional shift of the microbiome, differed across the intervention groups (p-trend=0.001), with a significant difference between the HDG group and the MED and green-MED groups (p=0.038 and p=0.004, respectively) (figure 4B), and no significant difference

Table 2 Changes in IHF across tertiles/categories of dietary components. Mankai shake and green tea tertiles are calculated from the weighted mean of consumption reported after 6 and 18 months of intervention. Serum folate tertiles (of 18-month change in serum folate): T1≤−0.41; T2=−0.40 to 1.46; T3≥1.47; Mankai shake tertiles: T1≤1.67/week; T2=1.68 to 3.00/week; T3≥3.01/week; green tea tertiles: T1≤2/day; T2=2.01 to 3.67/day; T3≥3.68/day; walnut consumption categories: low: 0 to 1–3 times/month; medium: 1–2 times/week to 3–4/week; high: more than 5–6/week. Categories intervention group distribution for walnuts: low consumption: 60% MED, 40% green-MED; medium consumption: 45% MED, 55% green-MED; high consumption: 45% Med, 55% green-MED. Specific between tertiles/consumption group p values are corrected for multiple comparisons. # none of the participants reported on more processed meat. IHF: intrahepatic fat; MED: Mediterranean; T1, lowest tertile; T2, intermediate tertile; T3, highest tertile.
between the MED groups (p=0.268). In a mediation analysis, the compositional shift of the microbiome was estimated to account for 22% of IHF change by the lifestyle interventions (figure 4C).

Evaluating the contribution of specific bacteria to this observation, we identified nine genus-level bacteria that were significantly associated with IHF at baseline (5% of genus-level bacteria), including Fournierella, Anaerophorobacter, Lachnospiraceae_UCG-003 and several genera from the Ruminococcaceae family. Among them, eight bacteria were also found to be associated with IHF 18-month change. Next, assessing the effect of lifestyle intervention on these bacteria, the interaction between time and lifestyle intervention group was evaluated. Two specific bacteria, Fournierella and Ruminococcaceae_UCG-014 were found to be significantly affected by lifestyle intervention. However, in a mediation analysis, both bacteria were not found as significant mediators between lifestyle intervention and IHF change (figure 4D, online supplemental table 5).

DISCUSSION

In the current study, we demonstrated that the prevalence of NAFLD was reduced in half by the strategy of exercise and green-MED diet enriched with Mankai and walnuts and restricted in red and processed meat, as reflected by increased plasma polyphenols and serum folate. Also, we found an independent association between 18-month IHF% reduction and beneficial changes in cardiometabolic, inflammatory parameters, specific gut bacteria and with global microbiota composition, which was also found to have a mediatory role in the association between lifestyle intervention and liver fat reduction. Following our previous trials suggesting that the MED diet is favourable to a low-fat diet in terms of cardiometabolic risk, and IHF loss, this clinical trial may suggest an effective nutritional tool for the treatment of NAFLD beyond weight loss, a predicament that very little, if any effect, pharmacological treatment exists for.

Several limitations of this study should be considered. First, we had a high proportion of male participants, reflecting the profile of the workplace. This limits our ability to extrapolate our results to women. In addition, NAFLD is almost as prevalent in women as compared with men, and thus gender aspects are not fulfilled by this trial. Also, this study’s results may not be extrapolated to a population that is not abdominally obese and/or with dyslipidaemia, or a population with a lower prevalence of NAFLD than seen among our participants. Yet, the high prevalence of liver steatosis is probably a reflection of a sedentary lifestyle and unhealthy eating pattern, as our participants did not report any alcohol abuse. Second, we assessed adherence to the intervention mainly by participants’ self-reports. However, serum folate analysis, reflecting green leaf consumption and correlate well with nutritional self-reports, enabled us to objectively estimate...
Figure 4 (A–D) Intrahepatic fat and the gut microbiome. (A) Gut microbiome composition (beta diversity) and IHF% at baseline. Gut microbiome composition and IHF, shown by principal coordinate analysis (PCoA) of UniFrac distances between all baseline samples. Colours denotes 1st (grey) 2nd (yellow) and 3rd (brown) IHF% tertiles. 95% SE ellipses are shown for each tertile. Boxplots on the right describe PCo1 score by IHF% tertile. (B) Gut microbiome composition change and IHF% change. Correlation between principal component 5 (PCo5), the principal coordinate most highly correlated with IHF change (Y axis), and 18-month change in intrahepatic fat. Colours denotes lifestyle intervention group allocation. Boxplots on the right describe PCo5 score by IHF% lifestyle intervention group. (C) Mediation analysis: assessing the proportional mediatory effect of microbiome composition change (measured as PCo5) in the association between lifestyle intervention and IHF% change. (D) Stepwise identification of genus level bacteria associated with: IHF% at baseline (top, two selected bacteria), IHF% 18-month change (middle, heatmap) and with lifestyle intervention (bottom, bar plot, selected bacteria). IHF, intrahepatic fat.
green products’ intake. Although we measured plasma poly-
phenols, these measurements are limited in reflecting poly-
phenol intake, as only a few phenolic acids, derived from
dietary polyphenol metabolism, will be present in overnight,
fasted blood samples. The strengths of the study include the
closed workplace environment, which enabled moni-
toring of the provided lunch, the presence of an on-site clinic
at the participants’ workplace; intense dietary guidance and
group meetings with multidisciplinary guidance; access to
free-of-charge provided polyphenols; relatively large sample
size; high retention rate; and the use of an accurate imaging
technique, as compared with other non-invasive methods
with high reproducibility between measurements, to quan-
tify IHF%.

According to current guidelines, obese or overweight indi-
viduals are advised to undergo a moderate 5%–10% weight
reduction by energy restriction. NAFLD patients are advised
to change their diet (ie, reduce added sugar and reduce
saturated fat) and engage in PA, both aerobic and
resistance. In our study, participants who were instructed
for HDG reduced both WC and IHF%, in accordance with
a previous publication, whereas aerobic PA interventions
in obese men and women, without weight loss, was found
to be useful in the reduction of liver steatosis. The MED
intervention in our study had greater efficacy in promoting
adiposity (WC and weight) reduction, in addition to IHF% loss,
similarly to data previously reported by us where some fat
depots, and more specifically IHF%, were effect-
ively reduced by the MED/low carbohydrate diet than the
low-fat diet, independently of VAT changes. The green-MED
diet achieved the highest IHF loss, within similar weight loss
as observed in the MED group, suggesting that diet compo-
sition has an effect beyond weight loss. We now add to this
knowledge by demonstrating an additional benefit from the
green-MED regimen, differed from the MED diet by being
rich in green polyphenols and restricted in red and processed
meat.

Polyphenols might play a role in reducing liver steatosis by
preventing hepatocellular damage through several possible
mechanisms, including reducing de novo lipogenesis,
increasing fatty acid oxidation and reducing oxidative stress. The MED eating pattern is based mainly on increasing plant-
rich in green polyphenols and restricted in red and processed
meat.

Polyphenols might play a role in reducing liver steatosis by
preventing hepatocellular damage through several possible
mechanisms, including reducing de novo lipogenesis,
increasing fatty acid oxidation and reducing oxidative stress. The MED eating pattern is based mainly on increasing plant-
rich in green polyphenols and restricted in red and processed
meat.
Nutrition

1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Acknowledgements We thank the DIRECT PLUS participants for their valuable contribution. We thank the California Walnut Commission, Wissotzky Tea Company, and Hinoman for kindly supplying food items for this study. We thank Dr Dov Brinner, Efrat Pupkin, Eyal Goshen, Avi Ben Shahat, Eysyatar Cohen and Benjamin Sarusi from the Nuclear Research Center Negev; Liz Shabat and Yulia Kovshan from Ben-Gurion University of the Negev; Andrea Angeli and Maria Ulaszew ska from the Metabolomics Unit, Fondazione Edmund Mach for their valuable contributions to this study.

Contributors AYM, ER, GT, HZ, AK and IShai contributed to the data collection. AYM and ER made the statistical analysis, interpreted the data, reviewed the literature and drafted the manuscript. ER, GT, HZ, AK, PR, Ishleif, II, AS, MB, KT, CD, LV, UC, MS, Mysmow, FH, MSampier and IShai contributed to the analysis and interpretation of data, and reviewed the language and intellectual content of this work. AYM and IShai revised the final draft of the study and approved the final version to be published.

Funding This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 209933838—Collaborative Research CentreCentre SFB1052 ‘Obesity Mechanisms’, to I Shai (SFB-1052/B11); Israel Ministry of Health grant 87472511 (to I Shai); Israel Ministry of Science and Technology grant 3-13604 (to I Shai); California Walnuts Commission (to I Shai) and the Project ‘Caba la_dietHealth’ (http://www.cabala project.eu) which received funding from the European Union’s Horizon2020 research and innovation grant agreement No 696295—ERA-Net Cofund ERA-HDHL ‘Biomarkers for Nutrition and Health implementing the JPI HDHL objectives’ (https://www.healthydietforhealthylife.eu) supported polyphenol analyses at FEM (to KT). AYM is a recipient of the Keitman Doctoral Fellowship at Ben-Gurion University of the Negev. None of the funding providers were involved in any stage of the design, conduct or analysis of the study and they had no access to the study results before publication.

Competing interests IS advises to the Hinoman, Ltd. nutritional committee. Youngster is medical advisor for Mybitto Ltd.

Patient consent for publication Not required.

Ethics approval The Soroka University Medical Centre Medical Ethics Board and Institutional Review Board approved the study protocol. All participants provided written informed consent and received no financial compensation.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The majority of results corresponding to the current study are included in the article or uploaded as supplementary material. No further data are available.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error or omissions arising from translation and adaptation or otherwise.

Open access

REFERENCES

1 van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 2008;94:231–41.

The effect of green Mediterranean diet on intrahepatic fat; The DIRECT PLUS randomized controlled trial

Supplemental Material

Supplemental Methods: Exclusion criteria
Exclusion criteria were an inability to partake in physical activity (PA), a serum creatinine level \(\geq 2 \text{mg/dL} \), disturbed liver function, a major illness that might require hospitalization, pregnancy or lactation for women, presence of active cancer or undergoing chemotherapy either at present or in the prior three years, participation in another trial, chronic treatment with warfarin (given its interaction with vitamin K), and being implanted with a pacemaker or platinum implant (due to inability to undergo magnetic resonance imaging included in the study design).

Supplemental Methods 2: Physical activity protocol
The aerobic effort increased gradually, starting with 20 minutes of aerobic training at 65% maximum heart rate, and increased to 45-60 minutes of aerobic training at 80% of maximum heart rate. The full workout program included 45-60 minutes of aerobic training 3-4 times/week; resistance training starting with one set of weights corresponding to 60% of the maximum weight, eventually reached the use of two sets of weights corresponding to 80% of the maximum weight. The resistance training included leg extensions, leg curls, squats, lateral pull-downs, push-ups, shoulder presses, elbow flexions, triceps extensions, and bent leg sit-ups.

Supplemental Methods 3: Provided polyphenol-rich products
Walnuts [groups Mediterranean (MED), green-MED]: The main polyphenols in walnuts are ellagitannins, ellagic acid, and its derivatives [1]. Walnuts are considered to have a beneficial effect on health maintenance and disease prevention [2]. In addition, Ellagitannin found in nuts was reported to reduce waist circumference (WC), low-density lipoprotein cholesterol (LDL-c), and triglycerides (TG) [3].

Green tea (group green-MED): an unfermented tea produced from the leaves of *Camellia sinensis*, is prepared by drying and steaming the leaves and is a rich source of polyphenols [4]. Most of the polyphenols found in green tea are Catechins (the monomer form of flavanols), mainly epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) [5,6]. Short-term (weeks long) intervention studies and meta-analyses have found an association between administrating green tea or its extracts and improvement in cardiometabolic health [7,8], weight reduction [6], and improved cognitive function [9,10].

Wolffia globosa duckweed - Mankai (group green-MED): A specific strain of *Wolffia globosa*, an aquatic plant, which can serve as a plant protein source. In Asian cuisines, *Wolffia globosa* (Mankai cultivated strain) is considered a natural food source or "vegetable meatball" [11]. Nutritionally, Mankai is characterized by high protein content (more than 45% of the dry matter) and the presence of 9 essential and 6 conditional amino acids [12]. In addition, it is a good source of omega-3 fatty acids [13]. The Mankai plant is rich in non-soluble fibers, iron, vitamins, minerals [14], and polyphenols, including catechins, caffeic acid, apigenin, quercetin, naringenin, and kaempferol [15,16]. Mankai provides bioavailable essential amino acids [12], iron [17], vitamin B12 [18], and has beneficial effects on postprandial and fasting glycemic control [19]. We guided the participants to prepare a green Mankai shake with additional ingredients, which also were part of the diet regimen (fruits,
walnuts, or vegetables) each evening. The green protein shake partially substituted for dinner, replacing beef/poultry protein sources.

Supplemental Methods 4: Lifestyle sessions and motivation techniques
The lifestyle interventions included 90-minute nutritional and PA sessions in the workplace with multidisciplinary guidance (physicians, clinical dietitians, and fitness instructors). These sessions were held every week during the first month, once a month, over the following five months, and every other month until the 18th month. All the lifestyle educational programs were provided at the same intensity to all three groups. To keep the participants motivated, text messages with relevant information for each assigned intervention group were sent on fixed time intervals. In addition, a website listing all nutritional and PA information needed by the participants to continue with the intervention was accessible to the participants according to their intervention group.

Supplemental Methods 5: H-MRS by Magnetic Resonance scanner
In order to quantify and follow intrahepatic (IHF%) changes, we used H-MRS, a reliable tool for liver fat quantification [20]. Localized, single-voxel proton spectra were acquired using a 3.0T magnetic resonance scanner (Philips Ingenia, Best, The Netherlands). The measurements were taken from the right frontal lobe of the liver, with a location determined individually for each subject using a surface, receive-only phased-array coil. Spectra with and without water suppression were acquired using the single-voxel stimulated echo acquisition mode (STEAM) with the following parameters: TR=4000msec, TE=9.0msec, and TM=16.0msec. The receiver bandwidth was 2000Hz, and the number of data points was 1024. Second-order shimming was used. Four averages were taken in a single breath hold for an acquisition time of 16 sec. The voxel size varied somewhat according to anatomy but was approximately 50(AP) × 45(RL) × 54(FH) mm. Water suppression was achieved using the MOIST (Multiple Optimizations Insensitive Suppression Train) sequence consisting of four phase-modulated T1 and B1 insensitive pulses with a 50Hz window. Data analyzed using Mnova software (Mestrelab Research, Santiago de Compostela, Spain) by an experienced physicist blinded to the intervention groups, who also performed visual quality control of fitted spectra. The total hepatic fat fraction in the image was determined as the ratio between the sum of the area under all fat divided by the sum of the area under all fat and water peaks[21]. Inter-class reliability was tested between two different technicians and resulted in an average measure of r=0.99 (p<0.001). Intra-class reliability was tested among all baseline scans and resulted in an average measure of r=0.96 (p<0.001). Liver fat color images were produced using PRIDE software (by Philips).

Supplemental Methods 6: Further laboratory methodology, anthropometric measurements, lifestyle, plasma polyphenol assessments, and risk scores calculations
Anthropometric parameters and laboratory methodology
Measurements were taken at baseline, after 6 and 18 months of intervention. Height was measured to the nearest millimeter using a standard wall-mounted stadiometer. Bodyweight was measured without shoes to the nearest 0.1kg. WC was measured halfway between the last rib and the iliac crest to the nearest millimetre by standard procedures using an anthropometric measuring tape. Two blood pressure (BP) measurements and resting pulse were recorded after resting, using an automatic BP monitor (Accutorr-4, Datascope) and calculated as the mean of the two measurements taken. Blood samples were obtained at 8:00 AM after a 12-hour fast. The samples were centrifuged and stored at -80°C. Serum total cholesterol (TC; Coefficient-of-variation (CV), 1.3%), High-density lipoprotein cholesterol (HDL-c), LDL-c, and TG (CV, 2.1%) were determined enzymatically with a Cobas-6000
automatic analyzer (Roche). Plasma levels of high-sensitivity C-reactive protein (hsCRP) were measured by ELISA (DiaMed; CV, 1.9%). Plasma glucose levels were measured by Roche GLUC3 (hexokinase method). Plasma insulin levels were measured with an enzyme immunometric assay (Immulite automated analyzer, Diagnostic Products; CV, 2.5%). The homeostatic model of insulin resistance (HOMA IR) was calculated as follows: insulin(µIU/ml)×glucose(mg/dl)/405 [22]. All biochemical analyses were performed at the University of Leipzig, Germany.

Assessment of nutritional intake and lifestyle habits
Self-reported food frequency questionnaires were administered through a computer at baseline, after 6 months, and at the end of the trial [23,24], which included intake assessment of provided items. We followed overall changes in the intake of specific food groups, as described previously [25] and further used lifestyle and validated PA questionnaire [26]. PA intensity levels were measured using metabolic equivalent (MET) units [27].

Plasma polyphenols metabolites:
The determination of polyphenol metabolites was performed according to the method of Vrhovsek et al [28] with some modifications. Briefly, a previously developed targeted metabolomic method was performed with an ultra-performance liquid chromatographic system coupled to a tandem mass spectrometry system with electrospray ionization (UHPLC-ESI-MS/MS). Before injection, samples were thawed at 4 °C. Sample preparation was performed using an Ostro™ Pass-through 96-well plate to remove phospholipids and proteins (Waters, Milford, MA, USA). An Ostro™ 96-well plate was fixed on top of a 96-well collection plate. 50 µl of plasma were pipetted into the wells, followed by the addition of 1% formic acid in acetonitrile (3:1 solvent/sample). The mixture was then quickly shaken for 5 minutes to promote protein precipitation. Vacuum (15 in. (∼381 mm) Hg) was then applied to the Ostro plate through a vacuum manifold, filtering out the nonphospholipid plasma components. This step was repeated twice to ensure protein precipitation. Then, samples were dried under nitrogen and reconstituted in 100 µl of methanol: water (1:1, v/v), containing hippuric acid D5 (1 µg/ml) as an external standard. Samples were finally transferred to LC vials and injected (2 µL) into the UHPLC–MS/MS system. All solvents were kept at 4 °C prior to their use, and all procedures were carried out in a cold room, assuming that a 4 °C extraction temperature and the relatively short extraction time (10 min) may be favorable for avoiding biological sample degradation and reducing the risk of metabolite precipitation. Quality control (QC) samples were also prepared prior to analysis by pooling a small fraction of all the individual analyzed samples. Data processing was performed using Waters MassLynx 4.1 (Waters, Milford, CT, USA) and TargetLynx software (Waters, Milford, CT, USA). Details of the liquid chromatography and mass spectrometry are described in Vrhovsek et al [28] and Gasperotti et al [29]. The analysis was performed at the Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento. Italy.

Fecal samples collection and 16s rRNA sequencing
Fecal samples were collected at baseline and 18 months at the study site, immediately frozen to –20°C for 1-3 days, then transferred to –80°C pending DNA extraction. Following extraction, samples were sequenced on a MiSeq platform following amplification of V3-V4 hypervariable region of the 16S rRNA gene using the primer set 341F/806R, and processed by the DADA2 pipeline. Rare OTUs (< 3% prevalence of all samples) were filtered out. Samples of participants prescribed antibiotic therapy 2 months prior to randomization and samples with less than 103 reads were excluded from the analysis. Analysis was performed at the Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento. Italy.
Supplemental Methods 7: Sample size calculations
We based the sample size calculation on the outcomes of a previous trial that resulted in a significant reduction in liver fat [30]: 6.7±6.1% reduction in the intervention group (increasing energy expenditure and reducing caloric intake) vs. 2.1±6.4% reduction in the control group (encouraged to reduce carbohydrate and fat intake and to engage in physical activity) with a 4.6 difference, pooled variance of 39.085. Calculation for the sample size needed for this trial, with a 5% α and a 90% power, suggested 39 participants in each intervention group. Considering a 14% expected dropout rate (based on our previous CENTRAL trial [31]), in order to detect differences between intervention groups, we needed a number of 45 participants in each group, and ultimately recruited a number of 98 participants per group (~90 in each group with a valid MRI scan). Sample size calculations were performed using Winpepi software, version 11.6.

Supplemental Methods 8: Microbiome statistical analysis
Microbiome composition was assessed based on relative abundance. For composition change, a change matrix was generated by calculating the log2 ratio between 18m and baseline, for each taxa and each individual as follows: log2 (18m relative abundance/baseline relative abundance). Dissimilarity between samples was measured by the UniFrac distance. Associations between gut microbiome composition and IHF, and IHF% change was assessed by permutational multivariate analysis of variance (PERMANOVA) with the adonis function (R “vegan” package), and by comparing principle coordinate scores across IHF% tertiles. The assess the association between microbiome composition, lifestyle intervention and IHF%, the principle coordinate vector most highly correlated with IHF% was chosen. The mediation analysis was performed by employing the mediation analysis suggested by Imai et al. [32] by the ‘mediate’ package in R (https://cran.r-project.org/web/packages/mediation/mediation.pdf). Lifestyle intervention was considered a ranked variable, taking into account the gradual increase of polyphenols, and gradual decrease in red and processed meat across the groups. For per-taxon analysis, we first aggregated all features to the genus level, and performed quality control filtering for taxonomic and functional features before including them in the subsequent analyses. To be qualified for downstream analyses, a taxonomic feature needed to be detected at a minimum relative abundance of 0.01% in at least 5% of samples. This analysis yielded 180 microbial species that met the criteria. We employed the R package MaAsLin 2 1.0.0 to perform per-feature tests taking into account the compositionality of the data and multiple testing (https://huttenhower.sph.harvard.edu/maaslin2). At first, features were selected by their association with ln transformed IHF at baseline. In the second phase features were selected by a model taking into account time, IHF and time*IHF interaction as fixed effects, with each individual as random effect. In the third phase, features were selected by a model taking into account group, time and time*group interaction as fixed effects, with each individual as random effect. All high-dimensional tests were corrected for multiple hypothesis testing by controlling the false discovery rate (FDR) using the Benjamini-Hochberg method with a target rate of 0.25 for q values estimated from the per-feature tests.

Supplemental Results 1: Further information regarding the adherence to the intervention
Among the green-MED group, the 18-month daily green tea consumption weighted average (accounting for the reported consumption after 6 months and the reported consumption after additional 12 months) was 2.8±1.6/day (median=2.7 cups/day, range 0-8.7) and the weekly consumption weighted average of Mankai was 2.6±1.8/week (median=2.3 shakes/week, range 0-7). Serum folate change was correlated with higher weekly Mankai intake (r=0.41, p<0.001), but not with daily green tea intake (r=0.08, p=0.53). In addition, the green-MED
and MED groups also similarly reduced their carbohydrates consumption (-27.9%±34.0 and -29.8%±31.3 respectively, over 18 months; p=0.72) as compared to the HDG group (p=0.03 vs. green-MED and p=0.01 vs. MED). Both MED groups also had similar daily walnuts amount (p=0.36) and monthly frequency of consumption (p=0.52) and were higher as compared with the HDG group (p≤0.001 HDG vs. the two MED groups).
Supplemental Figure 1: Subgroup analysis of IHF% change by the degree of weight loss/VAT reduction

Date presented as medians, 25th and 75th percentiles of intrahepatic fat. No interactions between the degree of either weight loss or visceral adipose tissue reduction with either MED or green-MED diets were observed. Weight loss and visceral adipose tissue reductions categories are presented as above/below sex-specific median value of 18-month change. Models adjusted to age and baseline IHF. * p of interaction MED diet with weight/VAT degree of change. ** p of interaction green-MED diet with weight/VAT degree of change.
Supplemental Figure 2: A comparison between the per-protocol changes and intention to treat techniques for the changes in intrahepatic fat (IHF)

(a) Per-protocol analysis

(b) Multiple imputation (MI)

(c) Last observation carried forward (LOCF)

Date presented as medians, 25th and 75th percentiles of intrahepatic fat. Comparing the per-protocol results to 2 intention to treat techniques (multiple imputation and last observation carried forward) showed that while the significant differences between the intervention groups remained, the effect size (measured as the 18-month change in intrahepatic fat) was reduced, as compared to the per protocol-analysis. This is in accordance with previously published regarding the conservative nature and potential bias of the last observation carried forward technique [33].
Supplemental Figure 3: Subgroup analysis of differences in 18-month IHF% change (completers).

Date presented as medians, 25th and 75th percentiles of 18-month change in IHF. Generalized linear models adjusted for baseline IHF%, 18-month weight change, and intervention group (BMI subgroup differences are adjusted for baseline IHF% and intervention group). The presence of DM was defined for participants with baseline fasting plasma glucose levels \geq126mg/dL or hemoglobin-A1c levels \geq6.5% or if regularly treated with oral antihyperglycemic medications or exogenous insulin. MS criteria were assessed based on the National Cholesterol Education Program Adult Treatment Panel III criteria. BMI, body mass index; DM, diabetes mellitus; IHF, intrahepatic fat. MS, metabolic syndrome; NAFLD, non-alcoholic fatty liver disease. * denotes significant difference within-group at $p<0.05$ level.
Supplemental Figure 4: (a) Red meat consumption change at T18 vs. 18-month total polyphenol change (tertiles) vs. 18m IHF% change. (b) Red meat consumption change at T18 vs. 18-month serum folic acid change (tertiles) vs. 18m IHF% change.

Date presented as medians, 25th and 75th percentiles of 18-month change in IHF. (a) Reductions in IHF% were significantly higher (-4.5±6.9% absolute units) in participants who both reduced red meat consumption and had the greatest increase in plasma polyphenols, as compared with participants who ate more red meat and had the least change in plasma polyphenols (2.1±1.4% absolute units; p=0.028 between groups). No interactions between tertiles of plasma polyphenol change and red meat change were observed. (b) IHF% reduction was greater among participants who reduced red meat and increased serum folate (-4.7±6.6%), as compared with participants who did not change red meat intake and had at least a moderate change in serum folate level (-1.8±7.5%). No interactions between tertiles of serum folate change and red meat change. *significant within group, T0 vs. T18. Between-group p values are corrected for multiple comparisons. IHF, intrahepatic fat.
Supplemental Figure 5: Associations of intrahepatic fat with cardiometabolic markers

At baseline, IHF% levels were correlated with anthropometric parameters, blood pressure, glycemic, lipid, and liver related markers (presented as bars, p<0.05 for all). When adjusted for baseline body weight, age, and sex (presented as dots on the bars), higher IHF% remained significantly associated with higher WC, systolic BP, fasting blood glucose, insulin, HOMA-IR, TG, TG/HDL-c ratio, TC/HDL-c ratio, hs-CRP, ALKP, ALT, AST, ALT/AST ratio, FGF21 and chemerin (p<0.05 for all). IHF% was found to be inversely associated with HDL-c (p<0.001). AST, aspartate transaminase; ALT, alanine transaminase; BP, blood pressure; HDLc, high density lipoprotein cholesterol; HOMA IR, Homeostatic Model Assessment of Insulin Resistance; IHF, intrahepatic fat; TG, triglycerides.
Supplemental Figure 6: 18-month change in liver related blood biomarkers, across intervention groups – for participants with valid MRI scans.

Between group p-values are adjusted for age, sex, and baseline level of the biomarker in interest, using General Linear Model. * significant within group as compared with baseline levels (p<0.05). AST, aspartate transaminase; ALT, alanine transaminase; ALKP, alkaline phosphatase; HDG, healthy dietary guidance; MED, Mediterranean.
Supplemental Figure 7: Association between the top 10 principle coordinates (based on UniFrac distance of the log2 change matrix) and IHF change (Ln transformed).

Spearman correlation between IHF change and top 10 principle coordinates (x axis). Top panel shows the correlation coefficient (red line) and bottom panel shows p value (blue line). Arrows point to the most highly correlated principal coordinate (#5; r=0.25, p=0.001).
Supplemental Table 1: Outline of the lifestyle interventions

<table>
<thead>
<tr>
<th></th>
<th>HDG</th>
<th>MED</th>
<th>Green-MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>18 months free gym membership</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-60 minutes of aerobic training +</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-4 times/week.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle group sessions</td>
<td>18-months group sessions in the workplace, weekly for the first month, and monthly thereafter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General dietary guidance</td>
<td>Limit dietary cholesterol, trans-fat, saturated-fat, sugars, and salt and increase intake of vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, kcal/day</td>
<td></td>
<td>1500-1800 kcal/day for men, 1200-1400 kcal/day for women</td>
<td>+1240 mg/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~40% mainly PUFA and MUFA</td>
<td>[source: provided walnuts (28 g/day), green tea (3-4 cups/day), Wolffia globosa duckweed (Mankai) shake (100 g/day frozen cubes)]</td>
</tr>
<tr>
<td>Total fat, % of daily consumption</td>
<td>Guidelines for a healthy MED diet with no specific recipes or calorie restriction</td>
<td>Less than 40 gr/day in the first 2 months with increased gradual intake for up to 80 gr/day</td>
<td>+440 mg/day [source: provided walnuts (28 g/day)]</td>
</tr>
<tr>
<td>Carbohydrates, gr/day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific recommendations</td>
<td>Less/Avoid red and processed meats. Reduced poultry intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphenols, mg/day</td>
<td></td>
<td>+1240 mg/day</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[source: provided walnuts (28 g/day), green tea (3-4 cups/day), Wolffia globosa duckweed (Mankai) shake (100 g/day frozen cubes)]</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Table 2: Lifestyle habits and medications, DIRECT PLUS population, baseline

<table>
<thead>
<tr>
<th></th>
<th>HDG (n=98)</th>
<th>MED (n=98)</th>
<th>Green-MED (n=98)</th>
<th>All (n=294)</th>
<th>(\chi^2) between groups¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking, %</td>
<td>19.4</td>
<td>13.3</td>
<td>16.3</td>
<td>16.3</td>
<td>0.51</td>
</tr>
<tr>
<td>Shift workers, %</td>
<td>22.4</td>
<td>23.4</td>
<td>23.4</td>
<td>23.1</td>
<td>0.98</td>
</tr>
<tr>
<td>PA intensity², METs/week</td>
<td>(11,41)</td>
<td>(16,50)</td>
<td>(13,38)</td>
<td>(12,42)</td>
<td>0.08</td>
</tr>
<tr>
<td>Alcohol², servings/day</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.16</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(0.05,0.03)</td>
<td>(0.05,0.3)</td>
<td>(0.05,0.3)</td>
<td>(0.05,0.3)</td>
<td></td>
</tr>
<tr>
<td>Chronic Pharmacotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-hypertensive, %</td>
<td>14.3</td>
<td>11.2</td>
<td>16.3</td>
<td>13.9</td>
<td>0.59</td>
</tr>
<tr>
<td>Cholesterol lowering, %</td>
<td>11.2</td>
<td>8.2</td>
<td>14.3</td>
<td>11.2</td>
<td>0.40</td>
</tr>
<tr>
<td>Anti-platelet, %</td>
<td>7.1</td>
<td>3.1</td>
<td>9.2</td>
<td>6.5</td>
<td>0.21</td>
</tr>
<tr>
<td>Exogenous insulin, %</td>
<td>1.0</td>
<td>1.0</td>
<td>3.1</td>
<td>1.7</td>
<td>0.27</td>
</tr>
<tr>
<td>Oral anti-hyperglycemic, %</td>
<td>6.1</td>
<td>4.1</td>
<td>8.2</td>
<td>6.1</td>
<td>0.49</td>
</tr>
</tbody>
</table>

¹ according to the chi-square test, except for MET and alcohol intake (assessed by Kruskal-Wallis test). ² Median (25th and 75th percentiles). HDG, healthy dietary guidelines; MED, Mediterranean.
Supplemental Table 3: Baseline and 18-month changes in reported dietary intake across intervention groups

<table>
<thead>
<tr>
<th>Macronutrients</th>
<th>HDG</th>
<th>MED</th>
<th>Green-MED</th>
<th>p between groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy at baseline (kcal/day)</td>
<td>2193±1180.7</td>
<td>2200.2±1119.3</td>
<td>2065.9±955.8</td>
<td>0.63</td>
</tr>
<tr>
<td>Energy change from baseline (kcal/day)</td>
<td>-336±1046</td>
<td>-666±1021</td>
<td>-544±975</td>
<td>0.73</td>
</tr>
<tr>
<td>change from baseline, %</td>
<td>-11.6±42.9</td>
<td>-23±27.6</td>
<td>-20±32.0</td>
<td>0.17</td>
</tr>
<tr>
<td>Total carbohydrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of energy at baseline</td>
<td>45.3±7.0</td>
<td>44.4±8.5</td>
<td>46.3±7.6</td>
<td>0.24</td>
</tr>
<tr>
<td>Change in g/d from baseline, %</td>
<td>-14.0±36.4</td>
<td>-29.8±31.3</td>
<td>-27.9±34.0</td>
<td>0.003</td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of energy at baseline</td>
<td>20.6±4.0</td>
<td>20.9±4.6</td>
<td>19.9±3.9</td>
<td>0.29</td>
</tr>
<tr>
<td>% change out of total energy intake</td>
<td>-5.8±58.3</td>
<td>-12.8±38.4</td>
<td>-14.3±40.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Total fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of energy at baseline</td>
<td>34.5±4.5</td>
<td>35.2±4.7</td>
<td>34.5±5.23</td>
<td>0.45</td>
</tr>
<tr>
<td>Change in g/d from baseline, %</td>
<td>-7.1±58.5</td>
<td>-15.7±32.0</td>
<td>-10.9±38.4</td>
<td>0.84</td>
</tr>
<tr>
<td>Baseline intake of food items, g/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red meat</td>
<td>37.8±31.5</td>
<td>41.8±31.3</td>
<td>40.6±38.7</td>
<td>0.58</td>
</tr>
<tr>
<td>Processed meat</td>
<td>13.2±16.6</td>
<td>12.7±12.4</td>
<td>12.3±11.6</td>
<td>0.99</td>
</tr>
<tr>
<td>Fish</td>
<td>24.0±22.2</td>
<td>26.6±35.8</td>
<td>19.8±12.7</td>
<td>0.65</td>
</tr>
<tr>
<td>Poultry</td>
<td>173.7±138.8</td>
<td>180.4±132.1</td>
<td>152.0±117.7</td>
<td>0.22</td>
</tr>
<tr>
<td>Eggs</td>
<td>33.2±28.0</td>
<td>32.0±25.3</td>
<td>33.9±25.9</td>
<td>0.88</td>
</tr>
<tr>
<td>Dairy</td>
<td>292.8±250.8</td>
<td>354.7±330.6</td>
<td>286.3±231.0</td>
<td>0.27</td>
</tr>
<tr>
<td>Tea (any type)</td>
<td>295.4±380.9</td>
<td>339.5±347.8</td>
<td>327.6±400.4</td>
<td>0.39</td>
</tr>
<tr>
<td>Nuts</td>
<td>7.8±9.3</td>
<td>8.6±12.9</td>
<td>8.1±8.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Food change frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>5.9</td>
<td>6.7</td>
<td>3.8</td>
<td>0.012</td>
</tr>
<tr>
<td>Same</td>
<td>52.9</td>
<td>46.7</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>41.2</td>
<td>46.7</td>
<td>67.9</td>
<td></td>
</tr>
<tr>
<td>Processed meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s). Gut doi: 10.1136/gutjnl-2020-323106
<table>
<thead>
<tr>
<th></th>
<th>Same</th>
<th>Less</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>37.6</td>
<td>62.4</td>
<td>0.43</td>
</tr>
<tr>
<td>Same</td>
<td>34.7</td>
<td>65.3</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>28.2</td>
<td>71.8</td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>63.5</td>
<td>1.2</td>
<td>0.55</td>
</tr>
<tr>
<td>Same</td>
<td>69.3</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>74.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Eggs and dairy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>35.3</td>
<td>27.1</td>
<td>0.002</td>
</tr>
<tr>
<td>Same</td>
<td>28.0</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>24.4</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>Green Tea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>11.8</td>
<td>15.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Same</td>
<td>6.7</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>26.9</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>Nuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More</td>
<td>32.9</td>
<td>31.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Same</td>
<td>60.0</td>
<td>37.3</td>
<td></td>
</tr>
<tr>
<td>Less</td>
<td>56.4</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± Standard deviations for continuous parameters and percentage for categorical parameters. ¹ Data extracted from reported food intake, not part of a recipe. ² Self-reported as compared with the last food change questionnaire.
Supplemental Table 4: Weekly walnut consumption and frequency (reported, time 18):

<table>
<thead>
<tr>
<th></th>
<th>HDG</th>
<th>MED</th>
<th>Green-MED</th>
<th>p between groups<sup>1</sup></th>
<th>p between MED groups<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Few</td>
<td>53</td>
<td>16</td>
<td>11</td>
<td><0.001</td>
<td>0.36</td>
</tr>
<tr>
<td>28 g/day</td>
<td>23</td>
<td>46</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunch</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>less than once a month or never</td>
<td>25</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3 times/month</td>
<td>21</td>
<td>14</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 times/week</td>
<td>19</td>
<td>12</td>
<td>10</td>
<td><0.001</td>
<td>0.52</td>
</tr>
<tr>
<td>3-4 times/week</td>
<td>8</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6 times/week</td>
<td>4</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>every day</td>
<td>3</td>
<td>12</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 times/day</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5 times/day</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Test by Chi-Square test. HDG, healthy dietary guidelines; MED, Mediterranean.
Supplemental Table 5: Genus level bacteria associated with IHF, IHF change and lifestyle intervention.

<table>
<thead>
<tr>
<th>Baseline associations</th>
<th>Genus Level bacteria</th>
<th>Coefficient</th>
<th>Standard error</th>
<th>p value</th>
<th>q value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHF</td>
<td>Fournierella</td>
<td>-0.0003709</td>
<td>7.65E-05</td>
<td>2.33E-06</td>
<td>0.00041326</td>
</tr>
<tr>
<td>IHF</td>
<td>Anaerosporobacter</td>
<td>-0.0002198</td>
<td>6.36E-05</td>
<td>0.00064969</td>
<td>0.05041708</td>
</tr>
<tr>
<td>IHF</td>
<td>Lachnospiraceae_UCG-003</td>
<td>-0.0001376</td>
<td>4.07E-05</td>
<td>0.00085453</td>
<td>0.05041708</td>
</tr>
<tr>
<td>IHF</td>
<td>Ruminococcaceae_UCG-009</td>
<td>-5.34E-05</td>
<td>1.77E-05</td>
<td>0.00276759</td>
<td>0.12246594</td>
</tr>
<tr>
<td>IHF</td>
<td>Ruminococcaceae_UCG-014</td>
<td>-0.0043576</td>
<td>0.0155184</td>
<td>0.0054229</td>
<td>0.19194916</td>
</tr>
<tr>
<td>IHF</td>
<td>Erysipelotrichaceae_UCG-003</td>
<td>0.00154705</td>
<td>0.00059427</td>
<td>0.00984842</td>
<td>0.21805458</td>
</tr>
<tr>
<td>IHF</td>
<td>Ruminococcaceae_UCG-008</td>
<td>-0.0001195</td>
<td>4.59E-05</td>
<td>0.00985557</td>
<td>0.21805458</td>
</tr>
<tr>
<td>IHF</td>
<td>Ruminococcaceae_UCG-010</td>
<td>-0.0008363</td>
<td>0.0003195</td>
<td>0.00945633</td>
<td>0.21805458</td>
</tr>
<tr>
<td>IHF</td>
<td>Ruminococcaceae_UCG-002</td>
<td>-0.0040148</td>
<td>0.00158245</td>
<td>0.01185459</td>
<td>0.23314025</td>
</tr>
<tr>
<td>18-month change</td>
<td>IHF</td>
<td>-0.0058954</td>
<td>0.00173597</td>
<td>0.00075311</td>
<td>0.01610349</td>
</tr>
<tr>
<td>18-month change</td>
<td>IHF</td>
<td>-0.006328</td>
<td>0.00226281</td>
<td>0.00541248</td>
<td>0.04517776</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Fournierella</td>
<td>0.00466757</td>
<td>0.00185459</td>
<td>0.01254249</td>
<td>0.05707647</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Ruminococcaceae_UCG-008</td>
<td>-0.0090038</td>
<td>0.0038452</td>
<td>0.01982263</td>
<td>0.07645871</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Ruminococcaceae_UCG-010</td>
<td>-0.0079535</td>
<td>0.00435396</td>
<td>0.06847972</td>
<td>0.16808659</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Lachnospiraceae_UCG-003</td>
<td>-0.0033651</td>
<td>0.00179764</td>
<td>0.06193927</td>
<td>0.16808659</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Lachnospiraceae_UCG-003</td>
<td>0.0043736</td>
<td>0.00223972</td>
<td>0.05182528</td>
<td>0.16808659</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Anaerosporobacter</td>
<td>0.00495938</td>
<td>0.00278814</td>
<td>0.07676383</td>
<td>0.17271863</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Ruminococcaceae_UCG-009</td>
<td>0.00576984</td>
<td>0.00336781</td>
<td>0.08760905</td>
<td>0.18195725</td>
</tr>
<tr>
<td>18-month change</td>
<td>Time*IHF interaction Ruminococcaceae_UCG-014</td>
<td>-0.0216027</td>
<td>0.01302554</td>
<td>0.09799635</td>
<td>0.18899296</td>
</tr>
<tr>
<td>Change by Lifestyle intervention</td>
<td>time*Green-MED interaction Fournierella</td>
<td>-0.0298969</td>
<td>0.01024317</td>
<td>0.00389043</td>
<td>0.15561715</td>
</tr>
</tbody>
</table>

18
<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Wightman EL, Haskell CF, Forster JS, et al. Epigallocatechin gallate, cerebral blood</td>
</tr>
</tbody>
</table>

27 Ainsworth BE, Haskell WL, Herrmann SD, *et al.* 2011 Compendium of Physical

