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Figure 7  The novel bacterial protease activity cleaves cell junction protein E-cadherin and is a feature of different spontaneous bacterial peritonitis 
(SBP)-inducing bacteria. (A) Caco-2 cells were treated with SBP-derived Proteus mirabilis (compare online supplemental table 6) at multiplicity of 
infection (MOI) 10, heat-inactivated (HI) P. mirabilis and bacterial supernatant of bacterial overnight culture (SN) for 4 hours. E-cadherin and occludin 
were analysed on protein level by Western blot. (B) Caco-2 cells were co-cultured with P. mirabilis (MOI 10), fixed and stained with crystal violet. Cell 
survival was quantified (right panel, n=3, mean±SD). (C) Proliferation of patient-derived P. mirabilis±BB-94 or DMSO was photometrically measured 
(n=3, mean±SD). (D) Following treatment with BB-94 (10 µM) for 20 min, Caco-2 cells were co-cultured with P. mirabilis at MOI 10 for 4 hours. Protein 
levels of occludin and E-cadherin were analysed by Western blot and (E) quantified by densitometry (n=3, mean±SD, Welch’s t-test). (F) Total protease 
activity of P. mirabilis±BB-94 and HI bacteria was measured by a f﻿luorescein isothiocyanate (FITC)-coupled protease substrate (n=3, mean±SD, 
Welch’s t-test). (G) Following treatment with BB-94 (10 µM, 20 min), Caco-2 cells were treated with patient-derived P. mirabilis at MOI 10 for 4 hours. 
Attached versus detached cells were analysed on protein level for E-cadherin and occludin or (H, I) induction of cell death via DAPI exclusion by 
flow cytometry. Total cells represent the combination of attached and detached cells (n=3, mean±SD, Welch’s t-test). (H, I) Blue lines and bars 
represent MOI 0, while red lines and bars represent MOI 10 P. mirabilis. (J, K) Analysis of E-cadherin and occludin protein levels by Western blot with 
densitometric analysis. Prior to P. mirabilis co-culture (MOI 10, 4 hours), Caco-2 cells were stimulated with 10 µM BB-2516 for 20 min (n=3, mean±SD).
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establish conditions favourable for their survival and growth.43 44 
We assume that similar mechanisms of ubiquitination may be 
responsible for degradation of occludin in our bacteria-Caco-2 
model. Alternative mechanisms of action of these effectors are 
(1) catalysing E1-independent and E2-independent ubiquitina-
tion, (2) post-translational modification of the ubiquitination 
cascade and (3) coupling their catalytic activity to components 
of the ubiquitination machinery.41 In conclusion, host ubiquiti-
nation is not only essential for eukaryotic cell development and 
homeostasis but also plays a critical role for the outcome of 
many bacterial infections. Thus, targeting proteasomal degra-
dation by pharmacological inhibition of bacterial ubiquitin 
ligase-like enzymes should be considered as a novel strategy to 
treat bacterial infections. Inhibition of the proteasome has been 
validated as an important strategy in anticancer therapy.45–49 We 
suggest that proteasome inhibition may offer a novel option to 
prevent degradation of occludin and to restore intestinal barrier 
function.

A novel bacterial protease activity cleaves E-cadherin, which 
leads to disruption of the integrity of the host epithelium
Furthermore, we highlight a novel bacterial protease activity, 
which is responsible for the cleavage of E-cadherin. Only live 
bacteria and to a lesser extent the SN, but not LPS, induced a 
decrease in cell junctional components. Thus, the respective 
protease activity must either be part of live bacteria or be secreted/
released into the supernatant. Highest protease activity was 
detected in the patient-derived SBP isolates E. coli Ont:H7 and 
P. mirabilis. As the protease activity could be partially blocked 
by the MMP inhibitors BB-94 and BB-2516, we suggest that 
patient-derived E. coli strains express a protease targeting E-cad-
herin. We could verify a bacterial protease activity in different 
SBP-inducing E. coli strains and in one P. mirabilis strain. This 
may allow generalising our hypothesis that intestinal bacteria 
destabilise cellular junctions via induction of proteasomal 

degradation of occludin and bacterial protease-induced cleavage 
of E-cadherin.

Established for cancer therapy, protease inhibition has evolved 
from strategies targeting large spectrum proteases to strategies 
targeting specific proteases and to indications beyond cancer.47 
Our data suggest that protease targets in SBP (analogous to the 
treatment options in inflammatory bowel disease) should include 
ubiquitin-proteasome system inhibitors.

Targeting bacterial proteases provides novel opportunities 
in anti-infective therapy. Resistance is of significant concern 
in patients with liver cirrhosis and SBP.50 There is an obvious 
need for more efficacious agents due to the failure of current 
antibiotics.51 We identified a novel protease activity, which 
constitutes a druggable target in SBP. We support the idea that 
next-generation anti-infective protease inhibitors will have wider 
clinical coverage compared with current ones that are mainly 
antiviral.
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