SARS-CoV-2 infection is associated with an increased risk of idiopathic acute pancreatitis but not pancreatic exocrine insufficiency or diabetes: long-term results of the COVIDPAN study

We recently published in Gut the outcomes of acute pancreatitis (AP) and coexisting SARS-CoV-2 infection. A number of patients who were SARS-CoV-2 positive had AP of unknown aetiology (25%) speculating SARS-CoV-2 as a cause for AP similar to other viruses. However, most patients did not complete investigations to exclude other causes of AP. In addition, SARS-CoV-2 infection may cause aberrant glycometabolic control, however it is unknown if this increases the risk of long-term diabetes mellitus (DM). The follow-up data were collected 12 months from the date of recruitment for 1476 patients (118 patients who were SARS-CoV-2 positive and 1358 patients who were negative) to establish an aetiology for AP and development of DM. Among the 118 patients who were SARS-CoV-2 positive, 35 patients had idiopathic or unknown aetiology AP. Sixteen patients underwent either MRCP (n=13) or EUS (n=4) and the remaining patients underwent biochemical investigations to exclude other causes of AP. The final aetiology of AP was available for 83 (70.3%) patients and included gallstones (56, 47.4%), alcohol (19, 16.1%), post ERCP (2, 1.7%) and other (6, 5.1%). Overall, 23 patients had a change of aetiology, and in 35 (29.7%) patients AP was considered idiopathic. Patients who were SARS-CoV-2 positive were more likely to have idiopathic AP (34.7% vs 13.9%, p<0.001) with over five times increased risk after adjusting for age, smoking status, body mass index and ethnicity (OR: 5.34, body mass index and ethnicity (OR: 5.34, p<0.001) (table 1 and online supplemental table S1).

Thirteen (11.0%) patients in the SARS-CoV-2 positive group and 187 (13.8%) patients in the negative group were readmitted with AP (p=0.949). The aetiology and baseline characteristics are summarised in online supplemental table S2. The risk of readmission was higher in younger patients, and lower in those with gallstone and idiopathic aetiology (online supplemental table S3).

Two patients developed DM and nine patients developed pancreatic exocrine insufficiency (PEI) in the SARS-CoV-2 positive group. SARS-CoV-2 did not increase the risk of DM (2.3% vs 2.5%, OR: 0.61, p=0.541) or PEI (OR: 1.11, p=0.828) (p>0.05; table 2).

Mortality after discharge was 12.7% in the SARS-CoV-2 positive group and 5.4% in the negative group (log-rank, p<0.0001; online supplemental figure S1). However, this was not statistically significant in a multivariable Cox-regression model (HR: 1.89, p=0.078).

The higher number of patients with idiopathic AP in the present series raises speculation that SARS-CoV-2 may indeed cause AP. Recently autopsy evidence has identified SARS-CoV-2 virus in the pancreases of infected patients, with focal pancreatitis.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of baseline characteristics of all patients in the follow-up cohort by aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levels</td>
<td>Known aetiology</td>
</tr>
<tr>
<td>SARS-CoV-2 status</td>
<td>SARS-CoV-2 negative</td>
</tr>
<tr>
<td></td>
<td>SARS-CoV-2 positive</td>
</tr>
<tr>
<td>Age</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Asian</td>
</tr>
<tr>
<td></td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
<tr>
<td>Premorbid ECOG status</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Smoking</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Follow-up ferritin</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Follow-up LDH</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Follow-up revised Atlanta Classification</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>Mod-severe</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Follow-up ARDS</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Follow-up liver steatosis</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Not reported</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Admission BMI</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Follow-up necrosectomy</td>
<td>Both</td>
</tr>
<tr>
<td></td>
<td>Neither</td>
</tr>
<tr>
<td>Percutaneous/MIRP</td>
<td>1 (0.6)</td>
</tr>
</tbody>
</table>

ARDS, acute respiratory distress syndrome; BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; MIRP, minimally invasive retroperitoneal pancreatic necrosectomy;
seen in autopsy specimens higher than that is diagnosed clinically. Laboratory evidence further suggests there is expression of ACE 2, TMPRSS and Neurulin-1 receptors in exocrine and endocrine cells of pancreas which enables SARS-CoV-2 entry and replication, resulting in elevated cytokine levels causing ribosomal dysfunction and pancreatic injury. Recent series have further shown that AP during SARS-CoV-2 infection is frequent in intensive care unit with a third of critically ill patients developing AP. Hyperglycaemia frequently noted in SARS-CoV-2 infection is likely from viral replication in beta cells causing impaired glucose-stimulated insulin secretion, with glycemic abnormalities detected for up to 2 months after recovery. In the present series, two patients in the positive group developed DM during follow-up and both had severe AP with necrosis which is likely the cause of DM rather than SARS-CoV-2-induced damage.

We have shown that SARS-CoV-2 infection increases the risk of idiopathic AP, but not long-term diabetes. Further laboratory studies that can prove replication of SARS-CoV-2 virus in human pancreas cells with resultant cell injury are warranted to establish SARS-CoV-2 virus as an aetiology for AP. Epidemiological studies are needed that can show an increase in the incidence of AP during the current pandemic to further implicate SARS-CoV-2 infection as a cause for AP and will add indirect evidence. Similarly, large cohort of patients with SARS-CoV-2 with temporal trends to support or refute the long-term risk of developing DM are warranted.

Table 2 Impact of SARS-CoV-2 on mortality, PEI and DM

<table>
<thead>
<tr>
<th>SARS-CoV-2 negative</th>
<th>SARS-CoV-2 positive*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-Month mortality after discharge</td>
<td>Ref</td>
</tr>
<tr>
<td>DHI</td>
<td>Ref</td>
</tr>
<tr>
<td>PEI</td>
<td>Ref</td>
</tr>
</tbody>
</table>

*HR for mortality, and OR for DM and PEI, 95% CI, and p value from adjusted logistic regression models. |
†Mortality adjusted for premorbid ECOG performance status and revised Atlanta classification. |
‡DM adjusted for sex and revised Atlanta classification. |
§PEI adjusted for age, sex, premorbid ECOG performance status and revised Atlanta classification. |
DM, diabetes mellitus; ECOG, Eastern Cooperative Oncology Group; PEI, pancreatic exocrine insufficiency.

Keith Roberts,17 Kelvin Wang,24 Krishi Ravi,29 Maria V Coats,36 Marianne Hollyphan,21 Mary Phillips,32 Michael Okocha,33 Michael SJ Wilson,34 Nadeem A Ameen,35 Nagappan Kumar,36 Nehal Shah,37 Pierfrancesco Lapolla,38 Connor Magee,39 Bilal Al-Sarireh,40 Raimund Lunesvicius,41 Rami Behmenda,42 Rishi Singhal,43 Srinivasa Balachandra,44 Semra Demirli Atic,45 Shameen Jaunoo,46 Simon Dewreyhouse,47 Tamsin Boyce,48 Vasileios Charalampakakis,49 Venkat Kanakala,50 Ziaigham Abbas,51 Nilanjana Tewari,52 Sanjay Pandanaboyana @53,54 COVID Pain Collaborative Group

1HPB Unit, Freeman Hospital, Newcastle upon Tyne, UK
2UK
3Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand
4University Hospitals Plymouth NHS Trust, Plymouth, UK
5Manchester Royal Infirmary, Manchester, UK
6Primley Park Hospital, Camberley, UK
7Derby Hospital, Derby, UK
8Addenbrooke’s hospital, Cambridge, UK
9Heartland hospital, Birmingham, UK
10Princess Alexandra Hospital, Harlow, Essex, UK
11Whittington Hospital, London, UK
12The Royal Liverpool Hospital, Liverpool, UK
13Mater Dei Hospital, Man, Malta
14University Hospital Lewisham, Lewisham, UK
15Nottingahm City Hospital, Nottingham, UK
16Royal Infirmary of Edinburgh, Edinburgh, UK
17Southampton General hospital, Southampton, UK
18Northampton General Hospital, Northampton, UK
19St Thomas Hospital, London, UK
20St James’s University Hospital, Leeds, UK
21Bristol Royal Infirmary, Bristol, UK
22Aberdeen Royal Infirmary, Aberdeen, UK
23Derby Hospital, Derby, UK
24Dumfries and Galloway Royal Infirmary, Dumfries, UK
25Wexham Park Hospital, Camberley, UK
26Auckland City Hospital, Auckland, New Zealand
27Queen Elizabeth Hospital, Birmingham, UK
28Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
29Chesterfield Royal Hospital NHS Trust, Chesterfield, UK
30Glasgow Royal Infirmary, Glasgow, UK
31Muskope Park Hospital, Taunton, UK
32Royal Surrey County Hospital, Surrey, UK
33Southmead Hospital, North Bristol NHS Trust, UK
34Forth Valley Royal Hospital, Larbert, UK
35University Hospital of Coventry and Warwickshire, Coventry, UK
36University Hospital of Wales, Cardiff, UK
37Northern General Hospital, Sheffield, UK
38Pollicino Umberto I, Sapienza University of Rome, Italy
39Arrowe Park Hospital, Wirral, UK

Morrison Hospital, Swansea, UK
41Anttree Hospital, Liverpool, UK
42University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
43Doncaster Royal Infirmary, Doncaster, UK
44Department of General Surgery, University of Health Sciences Tepeck Training and Research Hospital, Izmir, Turkey
45Brighton and Sussex University Hospitals NHS Trust, UK
46Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
47Aintree Royal Gwent Hospital, Newport, Wales, UK
48South Warwickshire NHS Foundation Trust, Warwick, UK
49James Cook University Hospital, Middlesbrough, UK
50Dr. Ziauddin University Hospital, Clifton Karachi, Pakistan
51University Hospitals Coventry & Warwickshire, Coventry, UK
52HPB and Transplant Unit, Freeman Hospital, Newcastle upon Tyne, UK
53Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK

Correspondence to Sanjay Pandanaboyana, HPB and Transplant Unit, Freeman Hospital, Newcastle upon Tyne, UK; s.pandanaboyana@nhs.net

Twitter Manu Nayar @mdmanuknayar, Chris Varghese @chrisvarghe98 and Sanjay Pandanaboyana @sanjay_HPB

Collaborators COVID Pain Collaborative Group: Aber Alatt (Department of Gastroenterology, Dr. Ziauddin University Hospital, Clifton Karachi, Pakistan); Alexandra Bell (Northern General Hospital, Sheffield, UK); Aley Aliosin (Kupeda University Hospital, Kigepa, Lithuania); Zahid Bahi (Altnaglevin Area Hospital, Londonerry, UK); Aman Ahmad (St. James University Hospital, Leeds, UK); Anamath Madhavan (James cook university hospital, Middlesbrough, UK); Andrea Mingoli (Pollicino Umberto I, Sapienza University of Rome, Italy); Angus White (The Royal Gwent Hospital, Newport, Wales); Arthur Cotton (Gloucestershire Hospitals NHS Foundation Trust, Gloucestershire, UK); Ashiy Patel (East surrey hospital, Surrey, UK); Ayobobala A Appama (Royal Liverpool hospital, Liverpool, UK); Bakhait Yawar (Western Health and Social Care Trust, Altnaglevin, Northern Ireland, UK); Hamidele Famokunwa (Wexham Park Hospital, Slough, UK); Blaise Rybinski (University Hospitals Plymouth NHS Trust, Plymouth, UK); Bruno Cirillo (Pollicino Umberto I, Sapienza University of Rome, Italy); Bryony Ford (University Hospitals Plymouth NHS Trust, Plymouth, UK); Caitlin Jordan (Musgrove Park Hospital, Taunton, UK); Catrin Jones (Glasgow Royal Infirmary, Glasgow, UK); Chris Varghese (Auckland University, Auckland, New Zealand); Charalampou Konstantinou (Warwick Hospital, Warwick, UK); Charles Geoffrey, Dermott Stewart (Musgrove Park Hospital, Taunton, UK); Colin Wilson (Freeman Hospital, Newcastle upon Tyne, UK); Daniel Marsh (St James’s University Hospital, Leeds, UK); David Bounce (Freeman Hospital, Newcastle upon Tyne, UK); Danny Chandla (University Hospital Coventry and Warwickshire, Coventry, UK); Dejanic Yelijurt (University of Health Sciences Tepeck Training and Research Hospital, Department of General Surgery, Izmir, Turkey); Dharmveer Trivedi (Southampton general hospital, Southampton, UK); Duncan Rutherford (Forth Valley Royal Hospital, Larbert, UK); Ebru Sezen Freed (Northampton General Hospital, Northampton, UK); Eleanor Massie (Forth Valley Royal Hospital, Larbert, UK); Elizabeth Ward (Royal Infirmary of Edinburgh, Edinburgh, UK); Ellen Murgitroyd (Northern General Hospital, Edinburgh, UK); Emily Britton (Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK); Euan J Dickson (Glasgow Royal Infirmary, Glasgow, UK); Evripidis Tokidis (Chesterfield...
Royal Hospital NHS Trust, Chesterfield, UK; Faris Soliman (Morriston Hospital, Swansea, Wales, UK); Francesco Abbadesco (Freeman Hospital, Newcastle Upon Tyne, UK); Gautam Singh (Frimley Park Hospital, Camberley, UK); Ghazaleh MOHAMMADI-ZANJANI (Freeman Hospital, Newcastle Upon Tyne, UK); Gordon Gregory (Nottingham city hospital, Nottingham, UK); George Ugwu (Doncaster Royal Infirmary, Doncaster, UK); George Brown (St James Hospital, Leeds, UK); Gioia Brachini (Pollicino Umberto I, Sapienza University of Rome, Italy); James Walmsley (Northampton General Hospital, Northampton, UK); Shabuddin Khan (Northampton General Hospital, Northampton, UK); Hadil Said (Wexham Park Hospital, Slough, UK); Heba Ali (Western Health and Social Care Trust, Altnagelvin, Northern Ireland); Harriet Whewell (The Royal Gwent Hospital, Newport, UK); Harry VM Spiers (Addenbrooke’s Hospital, Cambridge, UK); Henry D De’Ath (Frimley Hospital, Newport, UK); Hu Ying Charmaine Chan (Southampton University Hospital, Southampton); Imam Bhatti (Royal Derby Hospital, Derby, UK); Islam Noaman (Royal Infirmary of Edinburgh, Edinburgh, UK); Ismail Sert (University of Health Sciences Tepecik Training and Research Hospital, Department of General Surgery, Izmir, Turkey); James A Gossage (Kings college hospital, London); Jack Martin (Addenbrooke’s hospital, Cambridge); James Blackwell (Nottingham city hospital, Nottingham, UK); James Williams (Bristol Royal Infirmary, Bristol, UK); Jasmine Grace Moore (Dumfries and Galloway Royal Infirmary, Dumfries, UK); Jenna Shepherd (Aberdeen Royal Infirmary, Aberdeen, UK); Jennifer Wheat (The University Hospital of Wales, Cardiff); Jenny Cao (Addenbrooke’s hospital, Cambridge); Jeremy Fenech (Mater Dei Hospital, Malta); John Head (Freeman Hospital, Newcastle Upon Tyne); Kofi Oppong (Freeman Hospital, Newcastle Upon Tyne); Anitha James (Wexham Park Hospital, Frimley, UK); Kai Hartshorn (University Hospital Coventry and Warwickshire, Coventry, UK); Kelsey Rowsell (Morriston Hospital, Swansea, UK); Ken Philip (Weston General Hospital, Bristol, UK); Khaled Abdelgalil (Warwick hospital, Warwick, UK); Kieran McGilven (Forth Valley Royal Hospital, Larbert, UK); Leo Richard Brown (Dumfries and Galloway Royal Infirmary, Dumfries, UK); Louise Howse (University Hospital Lewisham, London, UK); Louise Silva (University Hospital of Wales, Cardiff, UK); Maitrey Patel (Princess Alexandra Hospital, Harlow, UK); Mandep Kaur (Royal Sussex County Hospital, Brighton, UK); Marcus Quinn (Southmead Hospital, Bristol, UK); Marwa Ahmed Jana (Northern General Hospital, Sheffield, UK); Rajiv Lahiri (Royal Surrey County Hospital, Essex, UK); James Hopkins (Southmead Hospital, Bristol, UK); Mohamed abousamra (Altnagelvin Area Hospital, Londonderry, UK); Mohamed Issa (Arrowe Park Hospital, Wirral, UK); Mohammed Hammad (Morriston Hospital, Swansea, UK); Muhammad Ali Qadeer (Department of Gastroenterology, Dr Ziauddin University Hospital, Clifton Karachi, Pakistan); Momir Elaye (St James Hospital, Leeds, UK); Muneeb Zafar (Dumfries and Galloway Royal Infirmary, Dumfries, UK); Mishal Shahid (Musgrove Park, Taunton, UK); Nanda Bandlamudi (Royal Derby Hospital, Derby, UK); Nnaemeka Chidumije (Heartlands hospital, Birmingham); Navneet Tiwari (Freeman Hospital, Newcastle Upon Tyne, UK); Obi Nwogwugwu (Bristol Royal Infirmary, Bristol, UK); Olivia Spence (Northern General hospital, Sheffield, UK); Paul Bassett (Stats consultancy LTD, UK); Paula Ghanem (The Royal Liverpool Hospital, Liverpool, UK); Paula Strong (The University Hospital of Wales, Cardiff); Peter Szatmary (The Royal Liverpool Hospital, Liverpool, UK); Riadh Salem (Wexham park, Frimley, UK); Rupaly Pande (Queen Elizabeth Hospital, Birmingham); Qazi R Muhammad (University Hospital Coventry and Warwickshire, Coventry, UK); Quentin M Nunes (Aintree Hospital, Liverpool, UK); Qazi Af Amin (Royal Sussex county hospital, Brighton, UK); Robert Sutton (The Royal Liverpool Hospital, Liverpool, UK); Robert Young (Arrowe Park Hospital, Wirral, UK); Roland Taylor (St James University Hospital, Leeds, UK); Sam Tingle (Freeman Hospital, Newcastle Upon Tyne, UK); Sarunas DaIldienas (Klaipeda University Hospital, Klaipeda, Lithuania); Sudin Daniel (Doncaster Royal Infirmary, Doncaster, UK); Sapna Gupta (Royal Gwent Hospital); Sanhalingam Jegatheeswaran (Manchester Royal Infirmary, Manchester, UK); Sattam Halaseh (Weston General Hospital, Bristol, UK); Shenlyr Noor (Aberdeen Royal Infirmary, Aberdeen, UK); Simon J McCluney (Whithington Hospital, London, UK); Sophie Allen (East surrey hospital, Surrey, UK); Stephanie Goh (Addenbrooke’s hospital, Cambridge, UK); Steven Brown (James cook university hospital, Middlesbrough, UK); Stuart Cowie (James cook university hospital, Middlesbrough, UK); Taiyun Kaya (University of Health Sciences Tepeck Training and Research Hospital, Department of General Surgery, Izmir, Turkey); Thomas Tooley (The Royal Gwent Hospital, Newport, Wales); Tamer Ghorab (Western Health and Social Care Trust, Doncaster, UK); Sapna Gupta (Royal Gwent Hospital, Newport, Wales); Tamer Ghorab (Western Health and Social Care Trust, Doncaster, UK); Sattam Halaseh (Weston General Hospital, Bristol, UK); Saudan Halaseh (Southampton General Hospital, Southampton, UK).

Contributors MN and SP were responsible for manuscript preparation, study concept and critical review. CV helped in manuscript preparation and critical review. All COVIDPAN Collaborators recruited patients.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

This article is made freely available for use in accordance with BMI’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMI. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/gutjnl-2021-326218).

To cite Nayar M, Varghese C, Kanwar A, et al. Gut Epub ahead of print: [please include Day Month Year]. doi:10.1136/gutjnl-2021-326218 Accepted 27 September 2021 Gut 2021;0:1–3. doi:10.1136/gutjnl-2021-326218

ORCID iDs
Manu Nayar http://orcid.org/0000-0002-1196-3406
Sanjay Pandanaboyana http://orcid.org/0000-0003-3099-2197

REFERENCES