Letter to the editor: vaccination against upper respiratory infections is a matter of survival in alcoholic liver disease

We read with great interest the report on SARS-CoV-2 infection in patients with primary biliary cholangitis (PBC) by Ampuero et al. An independent association of chronic liver disease with adverse clinical outcome in patients with COVID-19 was previously reported in this journal. However, the impact of SARS-CoV-2 and upper airway infections in general on patients with alcoholic liver disease (ALD) remains widely unknown. Yet, those data would be of high relevance to global public health and vaccination campaigns since alcohol related diseases are endemic. 57% of the population over age 15 has consumed alcohol in the last 12 months, and 2.3 billion people are current drinkers.

With respect to upper airway respiratory infections, patients with chronic liver disease, including those with ALD, are particularly susceptible to infections as the immune system is dysfunctional through several pathological mechanisms including decreased opsonisation, reticuloendothelial dysfunction, neutrophil impairment and abnormal immunoglobulin synthesis. Moreover, alcohol abuse, independently from other factors, depresses the immune system by decreasing the lymphocytes and antibodies and the production of cytokines as TNF-alpha, IL-1 and IL-6. Several human and murine studies have reported that patients with chronic alcohol consumption are at higher risk of severe influenza. Thus, respiratory infections such as seasonal flu or SARS-CoV-2 represent a major threat to these patients.

Unfortunately, despite general recommendations for seasonal influenza vaccinations, systematic evaluations of the efficacy of such vaccinations are widely lacking. Even more, the general perception appears that influenza vaccination is less beneficial in patients with ALD due to a lack of conclusive information (no randomisation, small sample sizes). In order to determine the benefit of influenza vaccination in (chronic) ALD, we analysed a large cohort of 4667 US patients with ALD for vaccination efficacy between 2000 and 2020. Patient data were obtained through the Observational Health Data Sciences and Informatics (OHDSI) consortium, an open-source, multistakeholder and interdisciplinary collaborative effort. This analysis demonstrated a highly significant benefit of influenza vaccinations, no matter what available strain or year were investigated during the last decade. Vaccinations against seasonal influenza A variants (H1N1 (p=0.000), H3N2 (p=0.000)), influenza B virus (p=0.000), Massachusetts-2-2010-liver variant (p=0.000) and B-Wisconsin-1-2010 (p=0.006) variant all demonstrated a highly significant survival benefit for ALD patients (figure 1). Our data clearly demonstrate the benefit of vaccination against upper airway respiratory (viral) infections, even in a severely ill cohort with 63% of all patients suffering from liver cirrhosis, 32% from ascites and 16% encephalopathy. A similar trend was observed in an independent Korean cohort of 7339 patients with ALD, which slightly failed to reach statistical significance (p=0.082, figure 2) but showed a clear separation of survival curves. This may be particularly due to a better survival of the non-vaccinated control group. The reasons for that may be manifold: First of all, the Ajou cohort of patients obviously were not as sick as the US cohort as measured by means of symptoms of decompensation. Also, number of patients with mental disorders was clearly lower in South Korean patients, which may well result in a better self-protecting behaviour in order to prevent influenza infections. Finally, generally more people have been wearing masks over the past two decades in Asia.

By reporting these data, we aimed to contribute urgently needed evidence on vaccination against upper airway infections in ALD. We conclude, that vaccination against ongoing or seasonal viral
Figure 2 Efficacy of vaccination against the influenza A virus (H1N1) in patients with alcoholic liver disease. Patients who received vaccination had a trend towards longer survival compared with those without vaccination; Ajou University, South Korea (p=0.082).

upper airway infections improved survival of patients with ALD at any investigated time and with respect to any investigated influenza strain in a large USA and similar trend in an Asian cohort. Vaccination must, therefore, be strongly recommended and carried out consistently.

Timo Itzel,1,2 Thomas Falconer,1 Jimmy Daza,1,2 Ana Roig,1,2 Jimmyung Park,4 Jae Youn Cheong,5 Rae Woong Park,6,7 Isabella Wiest,1,2 Matthias Ebert,1,2 George Hripcsak,2 Andreas Teufel1,2
1Department of Medicine II, Division of Hepatology, Division of Bioinformatics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
2Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
3Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
4Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea (the Republic of)
5Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea (the Republic of)
6Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea (the Republic of)
7Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

Correspondence to Professor Andreas Teufel, Department of Medicine II, Division of Hepatology, Division of Clinical Bioinformatics, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; andreas.teufel@medma.uni-heidelberg.de

Contributors All authors made significant contributions: Data analysis: TI, TF, JD, IW and AT. Data collection and curation: JP, JYC, RWP and GH. Darfing manuscript and intellectual discussion: AT, ME and GH. AT is responsible for the overall content as guarantor.

Funding This study was supported by the Foundation for Biomedical Alcohol Research, Schriesheim, Germany. AT received grants from the Sino-German Center for Research Promotion (grant numbers: GZ-1546 and C-0012), the State Ministry of Baden-Württemberg for Sciences, Research and Arts supporting the Clinical Cooperation Unit Healthy Metabolism at the Center for Preventive Medicine and Digital Health (grant identifier: CCU Healthy Metabolism), the Foundation for Biomedical Alcohol Research (grant identifier: N/A), and the Baden-Württemberg Center for Digital Early Disease Detection and Prevention (grant identifier: BW-ZDPP). This study also received a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HR16C001).

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non-commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Accepted 24 February 2022

Gut 2022;0:1–2. doi:10.1136/gutjnl-2022-327086

ORCID iDs
Jimmy Daza http://orcid.org/0000-0001-9902-5440
Andreas Teufel http://orcid.org/0000-0001-7953-8927

REFERENCES