Supplementary Figure 1

<table>
<thead>
<tr>
<th>Cut1</th>
<th>HR1</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1473.97</td>
<td>0.909811877</td>
<td>0.812063248</td>
</tr>
<tr>
<td>1512.056241</td>
<td>0.66937531</td>
<td>0.219964264</td>
</tr>
<tr>
<td>1550.142882</td>
<td>0.750410578</td>
<td>0.388201791</td>
</tr>
<tr>
<td>1588.228723</td>
<td>0.791699836</td>
<td>0.475315669</td>
</tr>
<tr>
<td>1626.314964</td>
<td>0.833520265</td>
<td>0.577835972</td>
</tr>
<tr>
<td>1664.401205</td>
<td>0.875883881</td>
<td>0.685450566</td>
</tr>
<tr>
<td>1702.487466</td>
<td>0.875883881</td>
<td>0.685450566</td>
</tr>
<tr>
<td>1740.573687</td>
<td>0.822405819</td>
<td>0.522782527</td>
</tr>
<tr>
<td>1778.659928</td>
<td>0.871546038</td>
<td>0.643757589</td>
</tr>
<tr>
<td>1816.746169</td>
<td>0.837814411</td>
<td>0.541295664</td>
</tr>
<tr>
<td>1854.83241</td>
<td>0.906726625</td>
<td>0.729292178</td>
</tr>
<tr>
<td>1892.918651</td>
<td>1.037528078</td>
<td>0.896398444</td>
</tr>
<tr>
<td>1931.004892</td>
<td>1.09257795</td>
<td>0.749181528</td>
</tr>
<tr>
<td>1969.091133</td>
<td>1.103278018</td>
<td>0.712536404</td>
</tr>
<tr>
<td>2007.177374</td>
<td>1.166347115</td>
<td>0.564046108</td>
</tr>
<tr>
<td>2045.263615</td>
<td>1.13913282</td>
<td>0.639640478</td>
</tr>
<tr>
<td>2083.349856</td>
<td>1.05637612</td>
<td>0.829774604</td>
</tr>
<tr>
<td>2121.436097</td>
<td>1.121894773</td>
<td>0.648049994</td>
</tr>
<tr>
<td>2159.522338</td>
<td>1.136163904</td>
<td>0.608429835</td>
</tr>
<tr>
<td>2197.608579</td>
<td>1.282838944</td>
<td>0.317540457</td>
</tr>
<tr>
<td>2235.69482</td>
<td>1.326277252</td>
<td>0.253990041</td>
</tr>
<tr>
<td>2273.781061</td>
<td>1.422476785</td>
<td>0.153210865</td>
</tr>
<tr>
<td>2311.867302</td>
<td>1.594979363</td>
<td>0.056234447</td>
</tr>
<tr>
<td>2349.953543</td>
<td>1.567093833</td>
<td>0.062123833</td>
</tr>
<tr>
<td>2388.039784</td>
<td>1.521138426</td>
<td>0.077987899</td>
</tr>
<tr>
<td>2426.126025</td>
<td>1.666342566</td>
<td>0.039193368</td>
</tr>
<tr>
<td>2464.212266</td>
<td>1.785132326</td>
<td>0.014292525</td>
</tr>
<tr>
<td>2502.29507</td>
<td>1.702188545</td>
<td>0.0242143753</td>
</tr>
<tr>
<td>2540.384746</td>
<td>1.584347371</td>
<td>0.049422889</td>
</tr>
<tr>
<td>2578.470989</td>
<td>1.702595408</td>
<td>0.02308708</td>
</tr>
<tr>
<td>2616.55723</td>
<td>1.601057844</td>
<td>0.046604043</td>
</tr>
<tr>
<td>2654.643471</td>
<td>1.640883615</td>
<td>0.034858952</td>
</tr>
<tr>
<td>2692.729712</td>
<td>1.850588756</td>
<td>0.008755126</td>
</tr>
<tr>
<td>2730.815953</td>
<td>1.853195883</td>
<td>0.008634889</td>
</tr>
<tr>
<td>2768.902194</td>
<td>1.86391509</td>
<td>0.008939134</td>
</tr>
<tr>
<td>2806.988435</td>
<td>1.640038686</td>
<td>0.044968889</td>
</tr>
<tr>
<td>2845.074676</td>
<td>1.692204722</td>
<td>0.093045363</td>
</tr>
<tr>
<td>2883.160317</td>
<td>1.729951398</td>
<td>0.029714302</td>
</tr>
<tr>
<td>2921.247158</td>
<td>1.729891398</td>
<td>0.029714302</td>
</tr>
<tr>
<td>2959.333399</td>
<td>1.679502085</td>
<td>0.045077266</td>
</tr>
<tr>
<td>2997.41964</td>
<td>1.725587137</td>
<td>0.040885951</td>
</tr>
<tr>
<td>3035.505881</td>
<td>1.75053168</td>
<td>0.039388989</td>
</tr>
<tr>
<td>3073.592122</td>
<td>1.936966431</td>
<td>0.03926126</td>
</tr>
<tr>
<td>3111.673632</td>
<td>1.876330989</td>
<td>0.03005828</td>
</tr>
<tr>
<td>3149.764604</td>
<td>1.598083772</td>
<td>0.125699913</td>
</tr>
<tr>
<td>3187.850845</td>
<td>0.9705217</td>
<td>0.94926715</td>
</tr>
</tbody>
</table>
Supplementary Figure 2

A

TGFβ1-2-3 ligands

B

Fibroblast TGF-beta response signature (F-TBRS)

C

CAF-A and CAF-B

myCAF and iCAF

D

Matrix Index – HIF stage II CC

p33 Pathway – HIF stage II CC

E

Differential contractility

Inflammatory-related

F

TGFβ1-2-3 ligands in HIF tumours

G

F-TBRS in HIF tumours

- **Relapse**
- **Non-relapse**

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

doi: 10.1136/gutjnl-2021-326183

Corry SM, et al.
Supplementary Figure 3

A

Discovery cohort

Validation cohort

B

<table>
<thead>
<tr>
<th>Method of stratification</th>
<th>Expression threshold</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC</td>
<td>6.5755150</td>
<td>0.5609756</td>
<td>0.8529412</td>
</tr>
<tr>
<td>Median</td>
<td>6.4744600</td>
<td>0.6341463</td>
<td>0.6764706</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of stratification</th>
<th>Expression threshold</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROC</td>
<td>9.0351230</td>
<td>0.7368421</td>
<td>0.7857143</td>
</tr>
<tr>
<td>Median</td>
<td>9.1369379</td>
<td>0.6315789</td>
<td>0.8571429</td>
</tr>
</tbody>
</table>
Supplementary Figure 4

A

Stage II/III Validation

B

<table>
<thead>
<tr>
<th>First author of study</th>
<th>Subgroup of poor prognosis mesenchymal/stem biology</th>
<th>Source of percentage data</th>
<th>Percentage of subgroup in cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guiney</td>
<td>CMS4</td>
<td>Main paper text</td>
<td>23</td>
</tr>
<tr>
<td>Roepman</td>
<td>C-type</td>
<td>Supp. Appendix S1</td>
<td>16</td>
</tr>
<tr>
<td>Budinska</td>
<td>D</td>
<td>Supp. Table 5</td>
<td>22.7</td>
</tr>
<tr>
<td>Sadanandam</td>
<td>Stem-like</td>
<td>Supp. Table 3</td>
<td>20</td>
</tr>
<tr>
<td>De Sousa de Melo</td>
<td>CCS3</td>
<td>Main paper text</td>
<td>27</td>
</tr>
<tr>
<td>Maria</td>
<td>C4</td>
<td>Supp. Table 5</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Average percentage</td>
<td></td>
<td>19.85</td>
</tr>
</tbody>
</table>

C

Stage II/III Validation

D

HiFi – Stage II/III Validation

LoFi – Stage II/III Validation

E

- StromalScore
- ImmuneScore
- Isella CAF
- Isella Endothelial
- Isella Leucocyte
- Epithelial Mesenchymal Transition
- Myogenesis
- UV Response Dn
- Coagulation
- TNFA Signalling via NFKB
- KRAS Signalling Up
- Apical Junction
- Inflammatory Response
- Allograft Rejection
- Angiogenesis
- Complement
- Hypoxia
- IL6 JAK STAT3 Signalling
- Hedgehog Signalling
- Interferon Gamma Signalling
- IL2 STAT5 Signalling
- Apoptosis
- TGFβ Signalling
- Notch Signalling
- Apical Surface
- Androgen Response
- Interferon Alpha Signalling
- p53 Pathway
- Glycolysis
- Unfolded Protein Response
- Spermatogenesis
- DNA Repair
- Oxidative Phosphorylation
- MYC Targets V1
- MYC Targets V2
- G2M Checkpoint
- E2F Targets

F

HiFi – Low (n=26)

HiFi – High (n=26)

G

Stage II Discovery

Stage II/III Validation

Supplementary Figure 6

A

Discovery

Validation

B

C

Co-culture

MSC + MD

Treat

Add DO-Ova

Analyse

Corry SM

D

HPS vs dsRNA UP in Discovery HiFi patients

HPS vs dsRNA UP in Validation HiFi patients

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) Gut
Supplementary Figure 7

A

Saline Poly(I:C) 0 20 40 60 Tumour Burden (%)✱✱

Saline Poly(I:C) 0 20 40 60 80 Tumour Burden (%)✱✱

B

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) Gut doi: 10.1136/gutjnl-2021-326183–16. 2022; Gut, et al. Corry SM
Supplementary Figure 8

Colorectal cancer cohort

Histological data
- H&E slide image
 - QuPath
 - Identifying stroma-rich tumours
 - Stromal classifier
 - Highest correlation
 - Fibroblast score
 - Translational fibroblast gene list defined (n=66)
 - Enables identification of stroma-rich tumours when H&E images are not available

Transcriptional data
- RNA-seq data
 - Pre-defined transcriptional markers
 - Identifying stroma-rich tumours
 - MCP Fibroblast Genes
 - ACTA2
 - FAP

Supplemental material placed on this supplemental material which has been supplied by the author(s)

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

Corry SM et al. Gut 2022; Gutfil:16. doi: 10.1136/gutjnl-2021-326183
Supplementary Table 1

Custom fibroblast gene set

<table>
<thead>
<tr>
<th>ACTA2</th>
<th>COL12A1</th>
<th>FAP</th>
<th>IGFBP5</th>
<th>MFGE8</th>
<th>PLXNA3</th>
<th>THY1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMTS2</td>
<td>COL1A1</td>
<td>FBLN1</td>
<td>ITGA11</td>
<td>MTSS1L</td>
<td>PODN</td>
<td>TMEM119</td>
</tr>
<tr>
<td>ANGPTL2</td>
<td>COL3A1</td>
<td>FBLN5</td>
<td>KRTAP1-5</td>
<td>MXRA8</td>
<td>PPP1R3C</td>
<td>TNFRSF11B</td>
</tr>
<tr>
<td>C1R</td>
<td>COL6A1</td>
<td>FGF7</td>
<td>LINCO1279</td>
<td>MYL9</td>
<td>PRR16</td>
<td>VASN</td>
</tr>
<tr>
<td>C1S</td>
<td>COL6A2</td>
<td>FIBIN</td>
<td>LOC100287387</td>
<td>PAMR1</td>
<td>PRRX2</td>
<td>VGLL3</td>
</tr>
<tr>
<td>CCDC80</td>
<td>COPZ2</td>
<td>GLT8D2</td>
<td>LOC100507165</td>
<td>PARVA</td>
<td>RGMB</td>
<td>WISP1</td>
</tr>
<tr>
<td>CD248</td>
<td>CREB3L1</td>
<td>GREM1</td>
<td>LOX</td>
<td>PCDH18</td>
<td>SCARF2</td>
<td></td>
</tr>
<tr>
<td>CEMIP</td>
<td>DCN</td>
<td>GREM2</td>
<td>LPAR1</td>
<td>PDGFRA</td>
<td>STC2</td>
<td></td>
</tr>
<tr>
<td>CNN1</td>
<td>EFEMP2</td>
<td>Hspb6</td>
<td>LRRN4CL</td>
<td>PDGFRB</td>
<td>SVEP1</td>
<td></td>
</tr>
<tr>
<td>CNTN3</td>
<td>ELN</td>
<td>HSPB7</td>
<td>MASP1</td>
<td>PLAC9</td>
<td>TAGLN</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 2

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Total cohort (n = 215) (%)</th>
<th>HiFi (n = 75) (%)</th>
<th>LoFi (n = 140) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Median (range) 72 (45 - 95)</td>
<td>72 (45 - 95)</td>
<td>72 (45 - 95)</td>
</tr>
<tr>
<td>Sex</td>
<td>Male 106 (49.3)</td>
<td>41 (54.7)</td>
<td>65 (46.3)</td>
</tr>
<tr>
<td></td>
<td>Female 109 (50.7)</td>
<td>34 (45.3)</td>
<td>75 (53.6)</td>
</tr>
<tr>
<td>Recurrence (within 5 years)</td>
<td>Yes 73 (34.0)</td>
<td>34 (45.3)</td>
<td>39 (27.9)</td>
</tr>
<tr>
<td></td>
<td>No 142 (67.4)</td>
<td>41 (54.7)</td>
<td>101 (72.1)</td>
</tr>
<tr>
<td>pT stage</td>
<td>3 188 (87.4)</td>
<td>65 (86.7)</td>
<td>123 (87.9)</td>
</tr>
<tr>
<td></td>
<td>4 27 (12.6)</td>
<td>10 (13.3)</td>
<td>17 (12.1)</td>
</tr>
<tr>
<td>Tumor location</td>
<td>Proximal 136 (63.3)</td>
<td>44 (58.7)</td>
<td>92 (65.7)</td>
</tr>
<tr>
<td></td>
<td>Distal 79 (36.7)</td>
<td>31 (41.3)</td>
<td>48 (34.3)</td>
</tr>
<tr>
<td>Tumor differentiation grade</td>
<td>Well 9 (4.2)</td>
<td>5 (6.7)</td>
<td>4 (2.9)</td>
</tr>
<tr>
<td></td>
<td>Moderate 174 (80.9)</td>
<td>61 (81.3)</td>
<td>113 (80.7)</td>
</tr>
<tr>
<td></td>
<td>Poor 33 (15.3)</td>
<td>9 (12.0)</td>
<td>23 (16.4)</td>
</tr>
<tr>
<td>Tumor subtype</td>
<td>Mucinous 37 (17.2)</td>
<td>13 (17.3)</td>
<td>24 (17.1)</td>
</tr>
<tr>
<td></td>
<td>Non-mucinous 177 (82.3)</td>
<td>61 (81.3)</td>
<td>116 (82.9)</td>
</tr>
<tr>
<td></td>
<td>No information 1 (0.5)</td>
<td>1 (1.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>Yes 36 (16.7)</td>
<td>10 (13.3)</td>
<td>26 (18.6)</td>
</tr>
<tr>
<td></td>
<td>No 127 (59.1)</td>
<td>43 (57.3)</td>
<td>84 (60.0)</td>
</tr>
<tr>
<td></td>
<td>No information 52 (24.2)</td>
<td>22 (29.3)</td>
<td>30 (21.4)</td>
</tr>
<tr>
<td>Number of lymph nodes assessed</td>
<td>Median (range) 13 (6 - 40)</td>
<td>11 (6 - 36)</td>
<td>14 (6 - 40)</td>
</tr>
</tbody>
</table>

HiFi patients were defined as those with ssGSEA fibroblast scores greater than the cutoff for the cohort which was generated using the findcut function.
Supplementary Table 3

Clinical information for validation data

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>Total cohort (n = 258) (%)</th>
<th>HiFi (n = 52) (%)</th>
<th>LoFi (n = 206) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Median (range)</td>
<td>73 (24 - 94)</td>
<td>70 (40 - 93)</td>
<td>73 (24 - 94)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>147 (57.0)</td>
<td>24 (46.2)</td>
<td>123 (59.7)</td>
</tr>
<tr>
<td>Female</td>
<td>111 (43.0)</td>
<td>28 (53.8)</td>
<td>83 (40.3)</td>
</tr>
<tr>
<td>Recurrence (within 5 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>62 (24.0)</td>
<td>14 (23.1)</td>
<td>47 (22.8)</td>
</tr>
<tr>
<td>No</td>
<td>196 (76.0)</td>
<td>38 (73.1)</td>
<td>159 (77.2)</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>203 (78.7)</td>
<td>39 (75.0)</td>
<td>164 (79.6)</td>
</tr>
<tr>
<td>3</td>
<td>55 (21.3)</td>
<td>13 (25.0)</td>
<td>42 (20.4)</td>
</tr>
<tr>
<td>Tumor location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal</td>
<td>118 (45.7)</td>
<td>28 (53.8)</td>
<td>90 (43.7)</td>
</tr>
<tr>
<td>Distal</td>
<td>140 (54.3)</td>
<td>24 (46.2)</td>
<td>116 (56.3)</td>
</tr>
<tr>
<td>MMR status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMMR</td>
<td>180 (69.8)</td>
<td>35 (67.3)</td>
<td>145 (70.4)</td>
</tr>
<tr>
<td>dMMR</td>
<td>47 (18.2)</td>
<td>4 (7.7)</td>
<td>43 (20.9)</td>
</tr>
<tr>
<td>No information</td>
<td>31 (12.0)</td>
<td>13 (25.0)</td>
<td>18 (8.7)</td>
</tr>
<tr>
<td>CIMP status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>52 (20.2)</td>
<td>9 (17.3)</td>
<td>43 (20.9)</td>
</tr>
<tr>
<td>-</td>
<td>178 (69.0)</td>
<td>36 (69.2)</td>
<td>142 (68.9)</td>
</tr>
<tr>
<td>No information</td>
<td>28 (10.9)</td>
<td>7 (13.5)</td>
<td>21 (10.2)</td>
</tr>
<tr>
<td>CIN status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>158 (61.2)</td>
<td>32 (61.5)</td>
<td>126 (61.2)</td>
</tr>
<tr>
<td>-</td>
<td>65 (25.2)</td>
<td>11 (21.2)</td>
<td>54 (26.2)</td>
</tr>
<tr>
<td>No information</td>
<td>35 (13.6)</td>
<td>9 (17.3)</td>
<td>26 (12.6)</td>
</tr>
<tr>
<td>tp53 mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>79 (30.6)</td>
<td>11 (21.2)</td>
<td>68 (33.0)</td>
</tr>
<tr>
<td>Wild-type</td>
<td>80 (31.0)</td>
<td>14 (26.9)</td>
<td>66 (32.0)</td>
</tr>
<tr>
<td>No information</td>
<td>99 (38.4)</td>
<td>27 (51.9)</td>
<td>72 (35.0)</td>
</tr>
<tr>
<td>KRAS mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>86 (33.3)</td>
<td>22 (42.3)</td>
<td>64 (31.1)</td>
</tr>
<tr>
<td>Wild-type</td>
<td>163 (63.2)</td>
<td>30 (57.7)</td>
<td>133 (64.6)</td>
</tr>
<tr>
<td>No information</td>
<td>9 (3.5)</td>
<td>0 (0.0)</td>
<td>9 (4.4)</td>
</tr>
<tr>
<td>BRAF mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>33 (12.8)</td>
<td>4 (7.7)</td>
<td>29 (14.1)</td>
</tr>
<tr>
<td>Wild-type</td>
<td>206 (79.8)</td>
<td>43 (82.7)</td>
<td>163 (79.1)</td>
</tr>
<tr>
<td>No information</td>
<td>19 (7.4)</td>
<td>5 (9.6)</td>
<td>14 (6.8)</td>
</tr>
</tbody>
</table>

HiFi patients were defined as those within the top 20% of the ssGSEA fibroblast scores for the cohort, with the other 80% considered LoFi.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Poly(I:C) Signature</th>
<th>Gene</th>
<th>Poly(I:C) Signature</th>
<th>Gene</th>
<th>Poly(I:C) Signature</th>
<th>Gene</th>
<th>Poly(I:C) Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSL6</td>
<td>IFNA10</td>
<td>PNP</td>
<td>LGALS16</td>
<td>PARP14</td>
<td>C15orf48</td>
<td>RAB3D</td>
<td></td>
</tr>
<tr>
<td>TSPO</td>
<td>IFNA4</td>
<td>IFIT3</td>
<td>LGALS14</td>
<td>NDRG1</td>
<td>GBP6</td>
<td>OASL</td>
<td></td>
</tr>
<tr>
<td>IFNA8</td>
<td>MLKL</td>
<td>XDH</td>
<td>CTSE</td>
<td>IFIH1</td>
<td>AGRN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNA2</td>
<td>MX1</td>
<td>SCT</td>
<td>IFNA5</td>
<td>GNB4</td>
<td>IRGM</td>
<td>MS4A6A</td>
<td></td>
</tr>
<tr>
<td>IFNA6</td>
<td>GLIPR2</td>
<td>CA13</td>
<td>IFNA21</td>
<td>SLFN12</td>
<td>GBP5</td>
<td>MS4A6E</td>
<td></td>
</tr>
<tr>
<td>IFNA13</td>
<td>SAMHD1</td>
<td>ZBP1</td>
<td>CXCL10</td>
<td>SLFN12L</td>
<td>BST2</td>
<td>LGALS13</td>
<td></td>
</tr>
<tr>
<td>IFNA7</td>
<td>CD40</td>
<td>IRF7</td>
<td>IFIT2</td>
<td>STAT2</td>
<td>LGALS3BP</td>
<td>CISH</td>
<td></td>
</tr>
<tr>
<td>IFNA17</td>
<td>CDK5R1</td>
<td>IFNB1</td>
<td>GJB2</td>
<td>TOR3A</td>
<td>CD86</td>
<td>AXL</td>
<td></td>
</tr>
<tr>
<td>CDKN2B</td>
<td>IL15</td>
<td>IL27</td>
<td>DDX58</td>
<td>ISG20</td>
<td>GCA</td>
<td>APOD</td>
<td></td>
</tr>
<tr>
<td>IFNA1</td>
<td>USP41</td>
<td>UBE2L6</td>
<td>CCND2</td>
<td>NT5C3A</td>
<td>OAS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNA14</td>
<td>USP18</td>
<td>FSCN1</td>
<td>C2</td>
<td>MNDA</td>
<td>DAXX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>