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ABSTRACT
Objective Clinical diagnosis and approval of new 
medications for non- alcoholic steatohepatitis (NASH) 
require invasive liver biopsies. The aim of our study 
was to identify non- invasive biomarkers of NASH and/
or liver fibrosis.
Design This multicentre study includes 250 patients 
(discovery cohort, n=100 subjects (Bariatric Surgery 
Versus Non- alcoholic Steato- hepatitis - BRAVES trial); 
validation cohort, n=150 (Liquid Biopsy for NASH 
and Liver Fibrosis - LIBRA trial)) with histologically 
proven non- alcoholic fatty liver (NAFL) or NASH 
with or without fibrosis. Proteomics was performed 
in monocytes and hepatic stellate cells (HSCs) 
with iTRAQ- nano- Liquid Chromatography - Mass 
Spectrometry/Mass Spectrometry (LC- MS/MS), while 
flow cytometry measured perilipin- 2 (PLIN2) and 
RAB14 in peripheral blood CD14+CD16− monocytes. 
Neural network classifiers were used to predict 
presence/absence of NASH and NASH stages. Logistic 
bootstrap- based regression was used to measure the 
accuracy of predicting liver fibrosis.
Results The algorithm for NASH using PLIN2 mean 
florescence intensity (MFI) combined with waist 
circumference, triglyceride, alanine aminotransferase 
(ALT) and presence/absence of diabetes as covariates 
had an accuracy of 93% in the discovery cohort and of 
92% in the validation cohort. Sensitivity and specificity 
were 95% and 90% in the discovery cohort and 88% 
and 100% in the validation cohort, respectively.
The area under the receiver operating characteristic 
(AUROC) for NAS level prediction ranged from 83.7% 
(CI 75.6% to 91.8%) in the discovery cohort to 97.8% 
(CI 95.8% to 99.8%) in the validation cohort.
The algorithm including RAB14 MFI, age, waist 
circumference, high- density lipoprotein cholesterol, 
plasma glucose and ALT levels as covariates to predict 
the presence of liver fibrosis yielded an AUROC of 
95.9% (CI 87.9% to 100%) in the discovery cohort 
and 99.3% (CI 98.1% to 100%) in the validation 
cohort, respectively. Accuracy was 99.25%, sensitivity 
100% and specificity 95.8% in the discovery cohort 
and 97.6%, 99% and 89.6% in the validation cohort. 
This novel biomarker was superior to currently used 
FIB4, non- alcoholic fatty liver disease fibrosis score 
and aspartate aminotransferase (AST)- to- platelet ratio 

and was comparable to ultrasound two- dimensional 
shear wave elastography.
Conclusions The proposed novel liquid biopsy is 
accurate, sensitive and specific in diagnosing the 
presence and severity of NASH or liver fibrosis and is 
more reliable than currently used biomarkers.
Clinical trials Discovery multicentre cohort: Bariatric 
Surgery versus Non- Alcoholic Steatohepatitis, BRAVES,  
ClinicalTrials. gov identifier: NCT03524365.
Validation multicentre cohort: Liquid Biopsy for NASH 
and Fibrosis, LIBRA,  ClinicalTrials. gov identifier: 
NCT04677101.

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The diagnosis of non- alcoholic steatohepatitis 
(NASH) currently relies on invasive liver biopsy. 
There is therefore an urgent need to find 
non- invasive biomarkers for NASH diagnosis, 
disease progression and intervention response 
monitoring. However, until now, no specific 
biomarker has been officially endorsed by the 
Food and Drug Administration and European 
Medicines Agency.

WHAT THIS STUDY ADDS
 ⇒ We identified two monocyte proteins, PLIN2 
and RAB14, which are able to predict the 
presence and severity of NASH and liver 
fibrosis, respectively.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The biomarkers we identified are sensitive 
and specific in diagnosing the presence and 
severity of NASH and/or liver fibrosis and are 
more reliable than currently used biomarkers. 
A liquid biopsy is, therefore, feasible in making 
diagnosis of NASH and/or liver fibrosis. 
Sensitive and specific biomarkers can help 
in identifying patients eligible for NASH 
pharmacotherapy or surgery in clinical trials 
and treatment efficacy monitoring.
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INTRODUCTION
The approval of drugs for non- alcoholic steatohepatitis (NASH) 
by the US Food and Drug Administration and the European 
Medicines Agency requires histological improvement of inflam-
mation without worsening of fibrosis, or NASH resolution and 
fibrosis improvement.1 Although histology remains the gold 
standard, the limitations include intraobserver and interobserver 
variability, but it also requires an invasive liver biopsy.

A large number of patients (65%–73%) enrolled in clinical 
trials who underwent liver biopsy do not meet the eligibility 
criteria.2 3 Hence, prebiopsy strategies targeting the right candi-
dates and reducing the number of screen failures are necessary. 
Indeed, the identification of appropriate biomarkers would 
increase patients’ enrolment in clinical trials, accelerating the 
development of therapeutic interventions for NASH.

Unfortunately, plasma biomarkers for the diagnosis of NASH 
have low sensitivity, ranging from 62% to 66%, and specificity, 
between 78% and 82%.4–17 Notably, none of the available 
biomarkers is able to predict the severity of NASH and, thus, 
NASH and fibrosis staging.

Moreover, it has been shown that scores of NASH and liver 
fibrosis greatly rely on body mass index (BMI) as a predictor 
variable and thus show a poor performance in obesity and 
morbid obesity with increase in false positives.18

Hence, we sought to identify a biomarker and algorithm able 
to predict not only the presence of NASH but also its severity.

We previously demonstrated that ectopic fat deposition in 
hepatocytes in non- alcoholic fatty liver (NAFL) and NASH 
correlates with ectopic fat accumulated in blood monocytes as 
lipid droplets (LDs).19 20 Hepatic macrophages include not only 
resident Kupffer cells (KCs) but also monocyte- derived macro-
phages (MoMFs). It has been suggested that as far as NASH 
progresses, KCs are replaced by MoMFs.21 These MoMFs can 
be reprogrammed or repolarised in the liver toward a proinflam-
matory and pathological phenotype acquiring a foamy pheno-
type. From the liver, they can re- enter the circulatory stream, as 
demonstrated in other diseases,22 in a dynamic transition.

NAFLs/NASHs are often associated with liver fibrosis, repre-
senting the main determinant of mortality in NASH.7 8 Liver 
fibrosis derives from the accumulation of extracellular matrix 
proteins. Inflammation activates KCs, releasing proinflamma-
tory cytokines, including transforming growth factor beta- 1. In 
turn, these activate transdifferentiation of hepatic stellate cells 
(HSCs) into myofibroblasts, the major source of extracellular 
matrix.9 23 24

The intracellular transport of metalloproteinases, HSCs 
enzymes that degrade collagen25 and consequently their secre-
tion are regulated by a set of Ras- related protein (RAB) GTPases, 
including RAB.26

Our study tested perilipin- 2 (PLIN2) levels in circulating 
monocytes as a predictor of histological NASH. Secondary, we 
tested RAB14 levels in circulating monocytes as a predictor of 
liver fibrosis.

METHODS
Cohorts
Discovery cohort
The discovery cohort consisted of 100 consecutive subjects aged 
46.9±10.5 years (67% women), screened during the enrolment 
of BRAVES ( ClinicalTrials. gov identifier: NCT03524365), a 
multicentre randomised controlled trial (RCT) in which 288 
subjects with histologically proven NASH with or without liver 
fibrosis were randomised (1:1:1) in three intervention arms 

(intensive lifestyle modification and medical treatment, Roux- 
en- Y gastric bypass (RYGB) or sleeve gastrectomy). Thirty- nine 
of the 100 subjects had screen failure after liver biopsy showing 
NAFL rather than NASH, and therefore they were excluded 
from the BRAVES trial.

The metabolic surgery cohort consisted of 50 different 
subjects enrolled in the BRAVES RCT studied at baseline and at 
1 year after RYGB.

None of the subjects had secondary causes or a history of 
alcohol excess.

Enrolment inclusion criteria were liver ultrasound showing 
steatosis, non- alcoholic fatty liver disease (NAFLD) fibrosis 
score of >0.676, BMI of ≥30 and <50 kg/m2 (amendment 1 
July 2019, previously BMI ≤40 kg/m2), age 25–65 years, both 
sexes, with informed consent signed.

Enrolment exclusion criteria were (1) regular and/or exces-
sive alcohol uptake (>20 g alcohol/day for women and >30 g 
alcohol/day for men); (2) clinical evidence of NAFLD secondary 
to iatrogenic GI or immunodeficiency (HIV infection) diseases; 
(3) clinical evidence of non- NAFLD hepatic diseases, including 
hepatitis B or C, or haemochromatosis; (4) Wilson’s disease; (5) 
glycogenosis; (6) alpha- 1 antitrypsin deficiency; (7) autoimmune 
hepatitis; (8) cholestasis liver disease; (9) presence of relevant 
cardiovascular, GI or respiratory diseases, or any hormonal 
disorder; (10) clinical evidence of decompensated liver disease 
(Child- Pugh score >7 points); (11) undergoing narcotics abuse; 
(12) relevant systemic diseases; and (13) pregnancy.

Validation cohort
The validation cohort included 150 subjects (LIBRA study,  Clin-
icalTrials. gov identifier: NCT04677101) aged 43.4±11.9 years, 
with 56% women. LIBRA, a multicentre cohort study, enrolled 
100 individuals with histologically proven NASH with or 
without liver fibrosis and 50 individuals who underwent elective 
cholecystectomy and whose histology showed either NAFL or 
no histological lesions.

Inclusion criteria for the 100 subjects were NASH documented 
by liver biopsy and no evidence of another form of liver disease 
in subjects with a BMI of ≥30 and ≤55 kg/m2. Fifty subjects, 
who underwent laparoscopic elective cholecystectomy but were 
otherwise in healthy conditions, aged 25–65 years, including 
both sexes, with informed consent signed, had an apparently 
normal liver.

Exclusion criteria were coronary event or procedure (myocar-
dial infarction, unstable angina, coronary artery bypass and 
surgery or coronary angioplasty) in the previous 6 months; 
liver cirrhosis; end- stage renal failure; participation in any other 
concurrent therapeutic clinical trial; any other life- threatening, 
non- cardiac disease; pregnancy; inability to give informed 
consent; substantial alcohol consumption (>20 g/day for women 
or >30 g/day for men); Wilson’s disease; lipodystrophy; paren-
teral nutrition; and interfering medications (eg, amiodarone, 
methotrexate, tamoxifen and corticosteroids).

The authors had full access to the data and take responsibility 
for the completeness and accuracy of the data and integrity of 
their analysis.

Liver biopsy and histology
In subjects with obesity, percutaneous liver biopsies were 
performed under ultrasonography with 16- gauge biopsy needles. 
Needle liver biopsies (also 16- gauge biopsy needles) were 
obtained during laparoscopic cholecystectomy. All liver biop-
sies had a length of >15 mm and contained ≥11 portal areas.27 
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NASH was diagnosed histologically in the presence of steatosis, 
lobular inflammation and hepatocyte ballooning with or without 
perisinusoidal fibrosis, and NASH activity was graded according 
to the value of Non- alcoholic Fatty Liver Disease Activity Score 
(NAS). NAS was calculated by adding the severity scores for 
steatosis, lobular inflammation and ballooning with a range 
from 0 to 8.28 A NAS=3, resulting from the sum of steatosis=1, 
lobular inflammation=1 and hepatocyte ballooning=1, was the 
minimum value to make a diagnosis of NASH.29

The Steatosis, Activity, Fibrosis (SAF) score was also calcu-
lated.30 Fibrosis, steatosis and activity were staged according to 
the system described by Kleiner et al29 and Brunt et al.31

The SAF scoring system separately assesses the grade of 
steatosis S histologically from S0 to S3, the activity grade A 
from A0 to A4 by addition of grades of ballooning and lobular 
inflammation, each graded from 0 to 2, and the stage of fibrosis 
F, from F0 to F4 according to NASH clinical research network 
(CRN) staging system. A single expert pathologist (FMV) read in 
a blinded manner the digitised slides according to CRN criteria. 
Relecture of the histological scores on digitalised images by a 
second independent pathologist (JCM) was performed.

Elastography
All patients underwent two- dimensional shear wave elastog-
raphy, performed with MyLab V.9 platform ultrasound system 
(Esaote, Genova, Italy) using a convex broadband abdominal 
probe C1- 8 MHz. Liver stiffness was measured obtaining four 
valid measurements in each patient considering both the median 
values in kilopascal and the ratio between IQR and the median 
value (M) (directly provided by the software) for the analysis. 
This technique has been shown to be effective in differentiating 
significant fibrosis ≥F2 from mild or absent fibrosis in a large 
series of patients with compensated chronic liver disease without 
comorbidities potentially affecting liver stiffness measurement.32 
The cut- off thresholds used to stage fibrosis are reported in 
Garcovich et al.32

Online supplemental materials report the methods for anthro-
pometric measures, dual X- ray absorptiometry, blood sample 
analyses, proteomic, human primary hepatocyte isolation, 
human primary HSC isolation, cell viability and cell purity 
after isolation, isolation of peripheral blood mononuclear cells, 
immunofluorescence, flow cytometry, and validation parameters 
and more detailed statistics.

Statistical methods
Sample size was calculated based on a restrictive hypothesis of 
area under the receiver operating characteristic (AUROC)=0.70 
for the new diagnostic test in discriminating subjects with and 
without NASH. We used a one- sided test: H0: AUROC=0.5, 
vs H1: AUROC >0.5, power=90%, alpha=0.025. The ratio 
between cases and controls was set at 0.6, and the total number 
of subjects enrolled in the discovery cohort was calculated as 
84. Considering an attrition rate of 15%, we estimated a final 
sample size of 100 subjects (40 with NASH and 60 without) 
in the discovery cohort. The validation cohort was 3/2 of the 
discovery cohort, therefore 150 patients were enrolled. The soft-
ware used was easyROC.33

The main outcome was the prediction of NASH diagnosis 
using a score derived from a neural network (NN) classifier 
including PLIN2 mean florescence intensity (MFI) in mono-
cytes and ALT, presence/absence of diabetes, triglycerides and 
waist circumference as covariates. These covariates, with proven 

univariate model significance, represent hepatic function and 
metabolic and lipid profiles.

For SAF- A level prediction, see online supplemental tables 1 
and 2.

Variables not normally distributed were log- transformed 
prior to analyses. Missing data were not replaced by imputa-
tion. In our machine- learning analysis, we combined NN- based 
probabilistic classification with resampling/bootstrapping. In 
this way, we calculated the number of hidden nodes and the 
analysis accuracy. The importance of variables was calculated 
using the Olden method.34 Model discrimination was measured 
by the AUROC. AUROC CIs were computed by bootstrapping 
procedure.

The total NAS score, computed as the sum of scores for 
steatosis, lobular inflammation and ballooning, originally 
ranging from 0 to 8 was split into three levels: NAS level=0 for 
total NAS score of <3, NAS level=1 for total NAS score=3 and 
NAS level=2 for total NAS score of ≥4. A NN classifier analysis 
was used to predict NASH severity based on NAS scores. We 
calculated the confusion matrix, accuracy and receiver operating 
characteristic (ROC) curves, with the respective areas under the 
curve (AUCs), for each level of NAS.

RAB14 (MFI) was tested as predictor of liver fibrosis, diag-
nosed by SAF- F (presence: SAF- F ≥1, absence: SAF- F=0), in 
a multivariate logistic stepwise regression model including 
relevant covariates. Since in the discovery cohort only 3% of 
patients were free of fibrosis, according to SAF- F, making the 
dataset unsuitable for model development, we randomly split 
the whole dataset into a discovery and a validation set to obtain 
a balanced number of patients with and without fibrosis, using 
the createdataPartition function of the R caret package, which 
allows random split of the sample, preserving the overall class 
distribution of the data.

SAF- F was then recoded as a three- level variable: SAF- F_
level=0 if SAF- F=0, SAF- F_level=1 if SAF- F=1 and SAF- F_
level=2 if SAF- F is ≥2.

RAB14 was then used to predict SAF- F levels in a multinomial 
model. A model including elastography instead of RAB14 was 
also used to compare the predictive capacity of the two predic-
tors. The quantitative variables were log- transformed prior to 
the analyses. AUROC assessed the discrimination ability of the 
model. The Youden criterion and the ‘closest top- left’ methods 
were employed to determine the best threshold. When Youden’s 
J statistic is used, the optimal cut- off is the threshold that maxi-
mises the distance from the diagonal line or, in other words, that 
maximises the sum of the sensitivity and specificity. The closest 
top- left method instead determines the optimal threshold as the 
point closest to the top- left part of the plot with perfect sensi-
tivity or specificity; specifically, it minimises the quantity ((1−
sensitivities)2+(1−specificities)2). The two criteria may or may 
not lead to the same cut- off point, but while the Youden criterion 
reflects the intention of maximising overall correct classification 
rates, the closest top- left criterion mathematically involves a 
quadratic term of non- immediate interpretation from a clinical 
point of view.35

AUROCs of the new score and classical indices of fibrosis 
(NAFLD fibrosis score, FIB4 and AST- to- platelet ratio) were 
compared according to DeLong et al.36

Continuous variables are reported as mean and SD, while 
categorical variables are reported as numbers and percentages. 
A p value of <0.05 was considered statistically significant. The 
analyses were conducted in R.37
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RESULTS
Proteomics and in vitro studies
To identify a possible biomarker of liver fibrosis, we performed 
proteomics in monocytes and HSCs obtained from liver biopsies 
of 5 subjects (2 men and 3 women) with NASH and liver fibrosis 
and in five subjects with negative histology for NASH and liver 
fibrosis from the LIBRA trial. Age was 45.80±6.18 in subjects 
with NASH and 40.60±2.41 years (p=0.118) in those without 
NASH; BMI was 39.21±6.22 and 36.20±4.76 kg/m2 (p=0.415) 
in subjects with and without NASH, respectively.

Two of the subjects in each group had type 2 diabetes (T2D) 
and hypertension and were treated with metformin and Dipep-
tidyl Peptidase- IV (DPP- IV) inhibitors for diabetes and ACE 
inhibitors and beta blockers for hypertension.

Using p<0.0001 and q<0.0001 as statistical significance 
thresholds, the proteomic analysis identified nine proteins 
differentially expressed in both HSCs and monocytes. Ras- 
related protein Rab- 18 (RAB18), annexin A6 (ANXA6) and 
Ras- related protein Rab- 14 (RAB14) were downregulated, while 
disintegrin and metalloproteinase domain- containing proteins 
8 and 9 (ADAM8 and ADAM9), Ras- related protein Rab- 25 
(RAB25), galectin- 1 and 12 (LGALS1 and LGALS12) and profi-
lin- 1 (PFN1) were upregulated in the presence of liver fibrosis 
(see online supplemental figure 1). Among the proteins screened 
by proteomic, RAB14 was the most modified in the presence of 
fibrosis and our first choice as possible biomarker for the predic-
tion of liver fibrosis.

To confirm the proteomic analysis, we have assessed RAB14 
expression by flow cytometry in both monocytes and HSCs 
of 20 subjects with NASH and liver fibrosis and 20 subjects 
without NASH and liver fibrosis, spanning from normal liver 
to NAFL (figure 1A–E). A linear regression analysis confirmed 
a high correlation of RAB14 in monocytes and HSCs (R2=0.73, 
p<0.0001) (figure 1F).

To assess PLIN2 as a possible diagnostic biomarker for NASH, 
we performed flow cytometry in monocytes and hepatocytes 
of the same subjects (figure 1G–K). Indeed, PLIN2 is a major 
protein coating LDs, and PLIN2 liver- specific knockout allevi-
ates diet- induced hepatic steatosis and inflammation in mice.38 
Using flow cytometry analysis, we found a high correlation 
(R2=0.85, p<0.0001) of PLIN2 expression in monocytes and 
hepatocytes (figure 1L).

The subjects included in RAB14 and PLIN2 analysis were 10 
men and 10 women in each group, the mean age was 46.05±2.03 
years in subjects with NASH and 43.80±1.79 years (p=0.411) in 
those without NASH; BMI was 38.49±1.23 and 35.97±0.87 kg/
m2 (p=0.103) in subjects with and without NASH, respectively. 
Ten subjects in each group had T2D and hypertension and were 
treated with Metformin, DPP- IV, and SGLT2i inhibitors for 
diabetes and ACE inhibitors and beta- blockers for hypertension.

Figure 1 shows the presence of LDs in monocytes and hepato-
cytes of two representative subjects, one with NASH/fibrosis 
(figure 1M–O) and the other one without NASH/fibrosis 
(figure 1N–P).

Figure 1 Laser scanning confocal immunofluorescence of monocytes, HSCs and hepatocytes from a representative subject with NASH/fibrosis 
(upper panels) and a representative subjects with negative histology for NASH/fibrosis (lower panels). (A–D) RAB14 staining in monocytes (A,B) and 
in HSCs (C,D). (E) Quantification of RAB14 protein expression by flow cytometry, in monocytes and HSCs of 20 subjects with NASH/fibrosis and 
20 subjects with negative histology for NASH/fibrosis. (F) Spearman correlation analysis and linear regression line fitting of RAB14 expression 
in monocytes and HSCs. (G–J) PLIN2 staining in monocytes (G,H) and in hepatocytes (I,J). (K) Quantification of PLIN2 protein expression by flow 
cytometry in monocytes and hepatocytes of 20 subjects with NASH/fibrosis and 20 subjects with negative histology for NASH/fibrosis. (L) Spearman 
correlation analysis and linear regression line fitting of PLIN2 expression in monocytes and hepatocytes. (M–P) LDs staining with Nile Red in 
monocytes (M,N) and in hepatocytes (O,P). The mean NAS was 4.05±0.15 in the 20 subjects with NASH and liver fibrosis and 0.65±0.11 in the 20 
subjects study without NASH and liver fibrosis from LIBRA. SAF- F mean was 1.95±0.17. Data are expressed as mean±SEM for linear regression 
analysis; Spearman rank correlation coefficients (R2) and p values are shown. Magnification ×60. Scale bar: 50 µm. DAPI, 4', 6- Diamidino- 2- 
Phenylindole; HSC, hepatic stellate cell; LD, lipid droplet; MFI, mean florescence intensity; NAS, Non- alcoholic Fatty Liver Disease Activity Score; NASH, 
non- alcoholic steatohepatitis; PLIN2, perilipin- 2.
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Table 1 Characteristics of the discovery, validation and whole cohorts

Variable name

Discovery 100 subjects Validation 150 subjects Whole 250 subjects

Mean (SD) (1st–3rd IQR) Mean (SD) (1st–3rd IQR) Mean (SD) (1st–3rd IQR) P value

Age 46.93 (10.54) (40–54) 43.39 (11.91) (33–53) 44.81 (11.49) (36–53) 0.014

Weight (kg) 117.14 (22.07) (103.5–130.25) 101.58 (31.98) (75–124) 107.8 (29.39) (88–126) <0.001

Height (cm) 166.66 (9.13) (160–172) 169.85 (9.85) (162–178) 168.57 (9.68) (161–176) 0.009

BMI (kg/m2) 41.96 (5.86) (38.53–46.03) 35.25 (10.72) (23.1–42.43) 37.93 (9.66) (32.74–44.27) <0.001

Hip circumference (cm) 131.06 (14.1) (120–142.5) 119.25 (21.69) (99–135.25) 123.67 (20.01) (110–138.5) <0.001

Waist circumference (cm) 129.19 (17.57) (115.75–143) 114 (26.22) (87.04–134.75) 120.07 (24.28) (104.25–137.88) <0.001

Waist to hip ratio 0.98 (0.09) (0.93–1.06) 0.96 (0.1) (0.89–1.03) 0.97 (0.09) (0.9–1.04) 0.045

DEXA FM (%) 47.57 (7.67) (43.2–53.5) 44.5 (11.35) (37.63–53.7) 45.8 (10.04) (39.65–53.7) 0.042

DEXA FM (kg) 59.04 (17.2) (45.85–68.2) 49.29 (21.32) (34.71–61.97) 53.42 (20.21) (42.07–65.67) 0.002

DEXA FFM (kg) 59.2 (14.38) (49.03–71.66) 55.67 (12.58) (46.15–65.7) 57.17 (13.44) (47.3–66.83) 0.106

HDL cholesterol (mg/dL) 50.18 (20.86) (38–56.5) 54.69 (17.12) (43–64.75) 52.88 (18.8) (40–61) 0.074

LDL cholesterol (mg/dL) 110.6 (36.09) (84.75–130.25) 112.11 (43.91) (92–127) 111.51 (40.89) (91.25–128) 0.766

Total cholesterol (mg/dL) 178.98 (32.31) (155- 201) 186.47 (39.73) (162.25–207.75) 183.48 (37.06) (159–202.75) 0.103

Triglycerides (mg/dL) 141.24 (64.54) (94.25–184.5) 131.73 (69.66) (87–160) 135.55 (67.68) (90–168) 0.271

Plasma glucose (mg/dL) 100.54 (26.08) (85.75–105.25) 98.71 (24.25) (82–109.75) 99.44 (24.96) (83–108) 0.576

Plasma insulin (IU/mL) 22.66 (19.2) (11.5–25.7) 18.04 (12.68) (9–23.2) 19.89 (15.75) (9.7–25) 0.036

HOMA- IR 5.84 (5.86) (2.78–6.44) 4.5 (3.57) (1.83–5.89) 5.04 (4.66) (2.07–5.9) 0.043

AST (IU/L) 23.64 (10.31) (16–29) 22.52 (10.11) (16–25) 22.97 (10.19) (16–27) 0.397

ALT (IU/L) 30.2 (20.01) (16–41) 29.25 (18.11) (17–36) 29.63 (18.86) (17–37) 0.704

γGT (IU/L) 37.22 (47.61) (17–40) 39.45 (54.37) (19–42) 38.56 (51.68) (19–40.75) 0.733

Albumin (g/L) 40.55 (2.78) (39–43) 40.85 (4.21) (39–42) 40.73 (3.7) (39–42.75) 0.493

Platelets (109/L) 239.19 (53.78) (199.75–269.25) 232.85 (60.93) (189.25–266) 235.38 (58.15) (193.25–266) 0.387

HbA1c (mmol/mol) 40.22 (7.81) (35–44) 37.04 (12.01) (26–43) 38.36 (10.57) (31–44) 0.015

Elastography 5.91 (1.64) (4.77–6.50) 5.11 (1.94) (3.42–6.2) 5.43 (1.86) (4.02–6.30) 0.0005

NAFLD fibrosis score −0.44 (1.03) (−1.16–0.26) −1.01 (1.32) (−1.99–−0.17) −0.78 (1.24) (−1.47–0.08) <0.001

AST to platelets ratio index 0.24 (0.14) (0.15–0.29) 0.24 (0.13) (0.16–0.29) 0.24 (0.13) (0.15–0.29) 0.692

FIB4 0.96 (0.46) (0.63–1.12) 0.87 (0.47) (0.59–1) 0.9 (0.47) (0.6–1.05) 0.137

  n % n % n % P value

Gender (women) 67 67 84 56 151 60 0.107

Diabetes 35 35 38 25 73 29 0.132

Fibrosis 97 97 100 66.7 197 78.8 <0.001

NASH 61 61 100 67 161 64 0.434

  n % n % n % P value

NAS 0 0 0 21 14 21 8.4 <0.001

NAS 1 24 24 29 19.3 53 21.2

NAS 2 15 15 0 0 15 6

NAS 3 16 16 38 25 54 22

NAS 4 31 31 47 31 78 31

NAS 5 13 13 13 9 26 10

NAS 6 0 0 2 1 2 0.80

NAS 7 1 1 0 0 1 0.40

SAF- S 0 30 30 50 33 80 32 0.308

SAF- S 1 22 22 41 27 63 25

SAF- S 2 35 35 49 33 84 34

SAF- S 3 13 13 10 7 23 9

SAF- A 0 7 7 50 33 57 23 <0.001

SAF- A 1 25 25 0 0 25 10

SAF- A 2 61 61 89 59 150 60

SAF- A 3 7 7 10 7 17 7

SAF- A 4 0 0 1 0.7 1 0.40

SAF- F 0 3 3 50 33 53 21 <0.001

SAF- F 1 49 49 46 31 95 38

SAF- F 2 42 42 43 29 85 34

SAF- F 3 6 6 11 7 17 7

BMI, body mass index; DEXA FFM, dual energy X- ray absorptiometry free fat mass; DEXA FM, dual energy X- ray absorptiometry fat mass; HbA1c, haemoglobin A1c; HDL, high- density lipoprotein; HOMA- IR, homeostasis 
model assessment for insulin resistance; LDL, low- density lipoprotein; NAFLD, non- alcoholic fatty liver disease; NAS, non- alcoholic fatty liver disease activity score; NASH, non- alcoholic steatohepatitis; γGT, γ-glutamyl 
transferase.

 on A
pril 19, 2024 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2022-327498 on 12 July 2022. D

ow
nloaded from

 

http://gut.bmj.com/


6 Angelini G, et al. Gut 2022;0:1–12. doi:10.1136/gutjnl-2022-327498

Hepatology

Discovery and validation cohorts
Table 1 reports the characteristics of the patients enrolled in the 
discovery, validation and global cohorts as well as in the NASH 
and NAFL groups. Overall, 250 subjects, aged 44.8±11.5 years, 
of which 60% were women, were studied. While the gender 
distribution in the two datasets was not different, the subjects 
in the discovery cohort were older (p=0.014). Diabetes preva-
lence was 35% in the discovery cohort and 25% in the validation 
cohort, respectively (p=0.13). The prevalence of hypertension 
was 56% in the discovery cohort and 60% in the validation 
cohort (p=0.968), and that of hyperlipidaemia was 45% in the 
discovery cohort and 49% in the validation cohort (p=0.964). 
The type and frequency of use of antidiabetic, antihypertensive 
and antihyperlipidaemic medications are reported in online 
supplemental table 3.

NASH was not associated with the cohorts: 61% vs 67% 
(p=0.43). Therefore, we can exclude dataset biases that could 
potentially affect supervised machine learning, since the primary 
aim of our study was to identify and validate biomarkers of 
NASH.

In contrast, the prevalence of liver fibrosis was different in 
the discovery (97%) and validation cohorts (66.7%) (p<0.001). 
Therefore, we randomly split the whole database into a discovery 
and a validation set to obtain a balanced number of patients with 
and without fibrosis when a model was built to predict fibrosis, 
but preserving the overall class distribution of the data.

Table 1 shows the two cohorts differed in anthropometric char-
acteristics. While plasma glucose levels did not differ between 
the two samples, plasma insulin and HOMA- IR showed border-
line statistical significance (p=0.036 and p=0.043, respectively). 
On histological examination, 20% of all participants had liver 
steatosis<5%, had no inflammation and no ballooning; 15.6% 
(NAS 3, ie, NAFL) had liver steatosis >5%, did not have or did 
have inflammation or had liver steatosis >5% did not have or 
did have ballooning; and 64.4% had NASH (NAS≥3). Liver 
fibrosis was observed in 78.8% of participants.

The relecture of the histological scores on digitalised images 
by a second independent pathologist (JC- M) yielded 85% accor-
dance with the centralised lecture (FMV). The results provided 
derived from the agreement of the two pathologists.

The mean PLIN2 levels in the subjects with NAFL were 
1.72±0.40 vs 4.58±1.70 MFI in the group with NASH 
(p<0.0001, Mann- Whitney U test).

NASH prediction
The NN analysis for the prediction of presence/absence of NASH 
produced an accuracy of 93% in the discovery and of 92% in the 
validation cohort; the AUCs were 97.8% (CI 95% to 100%) and 
97.6% (CI 95% to 100%), respectively. Sensitivity and speci-
ficity were 95% and 90% in the discovery cohort and 88% and 
100% in the validation cohort, respectively. All the subjects in 
the validation cohort without histological NASH were correctly 
predicted as having a NAS score of <3. Eight per cent of indi-
viduals with NASH, who were misclassified as being without 
NASH, had a NAS score of 3. The Olden algorithm identified 
PLIN2 in monocytes as the most important variable in classi-
fying subjects with and without NASH, followed by presence of 
diabetes and ALT levels. Figure 2A shows the NN composition; 
the AUROC curves for both cohorts are reported in figure 2B.

The model including only PLIN2 in monocytes as predictor 
produced an accuracy of 93% in the discovery cohort, with a 
sensitivity and specificity of 98.4% and 84.6%, respectively. 

Values in the validation cohort were 90%, 85% and 100%, 
respectively.

We also used an NN analysis (figure 3A) to predict the stages 
of NASH. Also in this case, the Olden algorithm identified 
monocyte PLIN2 as the most important variable in classifying 
subjects according to NAS levels. The classification had an accu-
racy of 85% in the discovery and 85.2% in the validation cohort. 
Twenty- one subjects without histologically proven NASH were 
correctly classified in the NAS level=0 class (ie, NAS score <3). 
Figure 3B shows the ROC curves for each NAS level in the vali-
dation cohort. The AUROC ranges from 83.7% (CI 75.6% to 
91.8%) to 97.8% (CI 95.8% to 99.8%). The average levels of 
PLIN2 in monocytes in the three classes of NAS are depicted in 
figure 4.

Two Excel files implementing the estimated networks to facil-
itate NASH diagnosis and NAS level prediction are provided in 
the online supplemental material.

Figure 2 PLIN2 diagnostic performance for predicting presence/
absence of NASH. (A) Architecture of the NN used. Each input node 
represents a biomarker, while edges represent the weights between 
layers. The thickness of the edge is proportional to the magnitude 
of each weight.Positive weights are plotted as black lines; negative 
weights as grey lines. In the NN, there are five input nodes: PLIN2, 
presence of diabetes, plasma triglycerides and ALT levels and waist 
circumference. There are three hidden nodes and one output node for 
presence of NASH. Two biases nodes are included. The bias node covers 
the same function of the intercept in a regression model. (B) ROC curves 
for predicting the presence of NASH (NAS ≥3) in the discovery and in 
the validation cohorts. FPR=1–specificity. AUC, area under the curve; 
B, bias weight; FPR, false- positive rate; H, hidden node; I, input node; 
MFI, mean florescence intensity; NAS, Non- alcoholic Fatty Liver Disease 
Activity Score; NASH, non- alcoholic steatohepatitis; NN, neural network; 
O, output node; PLIN2, perilipin- 2; ROC, receiver operating characteristic; 
TPR, true- positive rate.
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SAF-A prediction
In 2012, Bedossa et al30 described the SAF scoring system, which 
includes steatosis, activity and fibrosis and was proposed to aid 
in distinguishing between NAFL and NASH in subjects with 
morbid obesity.

SAF- A score is the activity part of the SAF scoring system that 
incorporates scores for ballooning and inflammation. Although 
NAS continues to be the most used score for the histologic diag-
nosis of NASH, a decrease of 2 points of SAF- A or more has been 
adopted as primary endpoint in some RCTs.39

Online supplemental figure 2 shows the monocyte levels 
of PLIN2 at different degrees of NASH severity, according to 
SAF- A.

Both the Youden and the closest top- left criteria led to a 
threshold of 0.38, according to which the accuracy of the algo-
rithm was 98.4% in the discovery cohort with a sensitivity of 

100% and a specificity of 93%; accuracy, sensitivity and speci-
ficity were 96%,100% and 82% when the same threshold was 
applied to the validation sample. The diagnostic ability of the 
model is shown in online supplemental figure 3, where the ROC 
curve is reported along with the identified threshold, AUROC, 
sensitivity and specificity.

The model predicted SAF- A levels with an accuracy of 89% in 
the discovery and 84% in the validation samples (online supple-
mental table 4).

Liver fibrosis prediction
RAB14 was used to predict liver fibrosis with a logistic model 
including also waist circumference, age, plasma glucose, high- 
density lipoprotein (HDL) cholesterol and ALT. The predictors 
were those variables, which were significant in a univariate anal-
ysis (online supplemental table 5) and represented a particular 
physiological aspect, the metabolic, lipidic and hepatic ones. 
The AUROC with its CI, calculated using bootstrap replicates, 
was 95.9% (CI: 87.6% to 100%) in the discovery sample. Accu-
racy, sensitivity and specificity were 99.2%, 100% and 95.8%, 
respectively, when the Youden criterium was adopted as classifi-
cation factor with a threshold of 0.55. In the validation sample, 
AUROC was 99.3% (CI 98.1% to 100%); accuracy was 97.6%; 
sensitivity was 99% and specificity and 89.6%.

When RAB14 was used as the only variable in the model, 
accuracy, sensitivity and specificity were 86.4%, 96.0% and 
45.8%, respectively, in the discovery cohort. In the validation 
cohort, they were 82.4%, 96.9% and 34.5%, respectively. In 
both cohorts, half of subjects without fibrosis were erroneously 
predicted as being with fibrosis (13/24 and 19/29); however, the 
diagnosis of fibrosis was correctly predicted (97/101 and 93/96). 
The use of glycaemia as a covariate increases the specificity to 
87.5% and to 86.2% in the discovery and validation cohorts, 
respectively.

Figure 5 shows the AUROC of the model containing RAB14 
(figure 5A) for the prediction of presence/absence of liver fibrosis 
in the discovery dataset and the RAB14 monocyte levels at SAF- 
F=0 (presence of fibrosis) and SAF- F ≥1 (figure 5B).

Figure 3 PLIN2 diagnostic performance for predicting NASH severity. 
(A) PLIN2 biomarker network for diagnosing of NASH severity through 
NAS levels. Architecture of the NN used. Each input node represents 
a biomarker, while edges represent the weights between layers. The 
thickness of the edge is proportional to the magnitude of each weight 
. Positive weights are plotted as black lines; negative weights as grey 
lines. In the NN, there are five input nodes: PLIN2, presence of diabetes, 
plasma triglycerides and ALT levels and waist circumference. There are 
three hidden nodes and three output nodes for NAS level=0 for total 
NAS score <3, NAS level=1 for total NAS score=3, NAS level=2 for total 
NAS score ≥4. Two bias nodes are included. The bias node covers the 
same function of the intercept in a regression model. (B) ROC curves 
for each level of NASH severity as identified by the NAS value (see 
aforementioned) in the validation cohort. FPR=1–specificity. AUC, area 
under the curve; B, bias weight; FPR, false- positive rate; H, hidden node; 
I, input node; MFI, mean fluorescence intensity; NAS, Non- alcoholic 
Fatty Liver Disease Activity Score; NASH, non- alcoholic steatohepatitis; 
NN, neural network; O, output node; PLIN2, perilipin- 2; ROC, receiver 
operating characteristic; TPR, true- positive rate.

Figure 4 Whisker plots of monocyte PLIN2 levels (MFI) measured 
by flow cytometry in the training and validation cohorts in different 
NASH stages: histological NAS <3, NAS=3 and NAS ≥4. MFI, mean 
fluorescence intensity; NAS, Non- alcoholic Fatty Liver Disease Activity 
Score; NASH, non- alcoholic steatohepatitis; PLIN2, perilipin- 2.
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The model accuracy in predicting fibrosis severity (SAF- F 
levels) was 69.6% in both the discovery and validation samples.

If the fibrosis stage was recoded as a three- level variable 
assuming values of 0 if SAF- F ≤1, 1 if SAF- F=2 and 2 if SAF- 
F=3, then the two models, one including RAB14 and other 
including elastography, produced the following accuracies: 
67.2% and 63.2% in the discovery and validation cohorts, 
respectively, for RAB14, and 65.6% in both the discovery and 
validation cohort for elastography. For the model including 
RAB14, the greatest percentage of misclassified individuals 
was those with SAF- F=2 who were classified in the lower level 
(SAF- F ≤1). The same occurred for elastography.

Elastography
When RAB14 was replaced with the variable of elastography 
liver stiffness in the same algorithm to predict presence/absence 
of fibrosis, AUROC was 95.9% (CI 87.5% to 100%), accu-
racy=98.4%, sensitivity=99.01% and specificity=95.8% in 
the discovery dataset. AUROC=99.2% (CI 98% to 100%), 
accuracy=96%, sensitivity=98% and specificity=91.5% were 

demonstrated in the validation dataset when the same Youden 
threshold of 0.51 was used.

No differences were found between the two models in terms 
of AUROCs in either the discovery or the validation datasets 
(p=0.48 and p=0.34, respectively).

Figure 5 shows the AUROC of the model containing elastog-
raphy (kPa) (figure 5C) for the prediction of presence/absence of 
liver fibrosis in the discovery dataset and the RAB14 monocyte 
levels at SAF- F=0 and SAF- F ≥1 (figure 5D).

When the elastography variable was used instead of RAB14 
in the multinomial model predicting SAF- F level, the accuracy 
was 68% in the discovery sample and 68.8% in the validation 
sample. RAB14 performance in diagnosing the severity of liver 
fibrosis was comparable to that of elastography.

RAB14 versus FIB4, AST-to-platelet ratio and NAFLD fibrosis 
score
The RAB14 algorithm was compared with the predictive capacity 
of FIB4, NAFLD fibrosis score and AST- to- platelet ratio index 

Figure 5 RAB14 (A) and elastography (C) diagnostic performance for presence/absence of NASH. The model estimates ±SE (A) (RAB14) are 
intercept −62.25±22.15, RAB14 −0.87±0.81, waist circumference 12.03±4.28, plasma glucose 1.09±3.66, age 3.33±2.40, HDL cholesterol 
−1.80±4.64 and ALT −0.23±1.25. The model estimates ±SE (C) (elastography) are intercept −61.69±22.84, elastography 2.49±2.48, waist 
circumference 10.1±4.84, plasma glucose 1.64±3.74, age 2.97±2.49, HDL cholesterol −1.43±1.70 and ALT −0.16±1.22. Monocyte RAB14 levels 
(MFI) measured by flow cytometry at Steatosis, Activity, Fibrosis- Fibrosis (SAF- F) scores 0 (NO Fibrosis), ≥1 (YES Fibrosis) in the training and validation 
cohorts (B). Ultrasound transient elastography (kPa) at SAF- F scores 0 (NO Fibrosis), ≥1 (YES Fibrosis) in the training and validation cohorts (D). AUC, 
area under the curve; FPR, false- positive rate; HDL, high- density lipoprotein; MFI, mean fluorescence intensity; ROC, receiver operating characteristic; 
TPR, true- positive rate.  on A
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to diagnose liver fibrosis in the validation cohort. The highest 
AUROC value was obtained with the new algorithm (99.3%, 
CI 98.1% to 100%), which was significantly higher than the 
AUROCs obtained with the other indices: AUROC NAFLD 
fibrosis score=85.2% (CI 77% to 92.3%) (p=0.0002), AUROC 
FIB4=62.2% (CI 49.8% to 74.6%) (p<0.0001) and AUROC 
AST- to- platelet ratio=61.8% (CI 51.3% to 72.6%) (p<0.0001).

Online supplemental figure 4 reports the ROC curves for each 
of the aforementioned indices.

Therefore, the algorithm containing RAB14 outperformed 
currently used biomarkers of liver fibrosis.

NASH and liver fibrosis prediction in subjects with diabetes 
and/or obesity
We wanted to verify how well the new biomarkers predicted 
NASH and fibrosis in subjects with diabetes and/or obesity. To 
this end, we used two stepwise regression models, one testing 
the dependence of PLIN2 on BMI, presence or absence of 
NASH, and presence or absence of diabetes. We also tested the 
dependence of RAB14 on BMI, presence or absence of liver 
fibrosis, and presence or absence of diabetes. NASH (β=2.27, 
p<0.0001) and BMI (β=0.04, p=0.006) were the only predic-
tors of PLIN2. A further model including all the variables used 
to predict NASH was tested in a stepwise regression procedure. 
The variables entered the model were therefore, in addition to 
BMI and diabetes, triglycerides, ALT and waist circumference. 
The only significant predictors in the final model were NASH 
(β=1.80, p<0.0001), BMI (β=0.037, p=0.005), triglycerides 
(β=0.003, p<0.046) and ALT (β=0.025, p<0.0001).

When only BMI and diabetes were considered as predictors 
of RAB14, it depended only on the presence of liver fibrosis 
(β=−5.66, p<0.0001), while BMI and diabetes were not signif-
icant predictors and were excluded from the final model by the 
stepwise selection procedure. When also age, ALT, HDL, waist 
circumference and plasma glucose were tested into the model, 
the only predictors of RAB14 were age (β=0.13, p<0.0001) and 
fibrosis (β=−7.64, p<0.0001).

Patients were then divided into two BMI classes, subjects 
without or with class 2 obesity, BMI of <35 and BMI of ≥35. 
The performance of the two algorithms, the one including PLIN2 
and the other one including RAB14, were evaluated in terms of 
accuracy. PLIN2 had an accuracy of 81% for predicting NAS 
level in the subgroup of 178 subjects with severe obesity and an 
accuracy of 87.7% in the subgroup of 73 patients suffering from 
diabetes. Sixty- six subjects had both obesity and diabetes; in 
this subgroup, the accuracy of our algorithm was 87.9% (online 
supplemental figure 5). In the subgroup of subjects with BMI of 
<35, the accuracy was 95.8%.

When the algorithm with RAB14 was used, its accuracy in 
predicting liver fibrosis (presence/absence) was 95.8% in the 
subgroup of subjects with obesity, 100% in the subgroup with 
diabetes, and 100% in the subgroup of patients with both obesity 
and diabetes.

Accuracies were 62%, 68.5% and 68.2% when predicting 
fibrosis stages, respectively.

Patients were then divided into two BMI classes, subjects 
without or with obesity, BMI of <30 and BMI of ≥30, and the 
performance of the two new algorithms was evaluated in terms 
of accuracy (online supplemental figure 5). The algorithm with 
PLIN2 predicted the NAS levels with an accuracy of 81.2% in 
the subgroup of 196 subjects with obesity and with an accuracy 
of 87.7% in 73 patients with diabetes. All patients with diabetes 
had a BMI of ≥30; therefore, the accuracy was the same than 

in those patients with obesity. Accuracy in the subsample of 
53 patients with BMI of <30 was 100%. The accuracy of the 
algorithm with RAB14 in predicting SAF- F levels was 62.9% in 
patients with obesity and 68.5% in those with diabetes. Using 
liver stiffness elastography variable instead of RAB14 allowed 
an accuracy of 61% and 63% in patients with obesity and/or 
diabetes, respectively. The misclassified patients with obesity 
were mostly subjects with SAF- F equal to 1 but who were 
predicted as having a more severe condition (SAF- F_level=2) 
or vice versa their fibrosis severity was underestimated, they 
were predicted in the SAF- F_level=1 class when instead had an 
SAF- F ≥2 (in total 35% for RAB14 and 37.6% for elastography).

NASH and fibrosis prediction before and after metabolic 
surgery
Fifty patients with histologically proven NASH who underwent 
RYGB were included in this study (BRAVES RCT). Ultrasound- 
guided needle liver biopsy was performed at 1 year after surgery. 
The patients lost an average of 37 kg corresponding to 28.8% wt 
loss. Anthropometry, plasma glucose and insulin, HOMA- IR, 
lipid profile, blood pressure and liver enzymes levels are reported 
in table 2; all variables were significantly improved after meta-
bolic surgery. NASH was fully reversed in 74% of participants 
according to the values of NAS; however, while the severity of 
liver fibrosis improved, the fibrosis did not disappear. Actually, 
the prevalence of SAF- F1 increased from 46% to 70%, while 
that of SAF- F2 halved from 46% to 22%, and SAF- F3 decreased 
from 8% to only 2%.

We evaluated the performance of the two new algorithms in 
this external cohort.

The accuracies were 75.5% and 87.5% before and after 
surgery, respectively, for NAS level prediction. The accuracy 
in predicting SAF- F levels before surgery was 67.3%. Since 
bariatric surgery causes changes in metabolism and has effects 
on several mechanisms, the model developed on a population 
with 78.8% of individuals with moderate to severe obesity could 
be inappropriate to predict a population of an individuals who 
underwent metabolic surgery. The model, including the same 
variables, was therefore fitted on the surgery population, and 
the accuracy was 81.2% for SAF- F level prediction using RAB14. 
Online supplemental table 6 reports the coefficients of the model 
for the surgery cohort. When the TE variable was used in place 
of RAB14, accuracy was 73.5%. No significant differences were 
observed between the predictivity of RAB14 and elastography 
algorithms.

Data in the group of subjects who underwent metabolic 
surgery are graphed in online supplemental figure 6.

DISCUSSION
We show that a liquid biopsy using circulating monocytes can 
accurately predict the presence and severity of NASH as well 
as liver fibrosis in subjects without other causes of chronic liver 
disease or steatosis.

An algorithm containing PLIN2, as measured in peripheral 
blood monocytes, had an accuracy between 92% and 93%, 
sensitivity of 88%–95% and specificity of 90%–100% for the 
diagnosis of NASH. Similarly, an algorithm with RAB14 in circu-
lating monocytes had an accuracy between 99.2% and 97.6%, 
sensitivity of 90%–98% and specificity of 87%–93% for the 
diagnosis of liver fibrosis. Unlike other algorithms in the litera-
ture,11–18 ours was able to discriminate among various stages of 
NASH severity.
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Table 2 Characteristics of the subjects in the metabolic surgery cohort, baseline and 1- year postsurgery data
Before RYGB 50 subjects After RYGB 50 subjects

Variable name Mean (SD) (1st–3rd IQR) Mean (SD) (1st–3rd IQR) P value

Age 48.72 (8.94) (44–54) 49.72 (8.94) (45–55) –

Weight (kg) 128.52 (25.47) (108.75–149.25) 91.52 (25.1) (75–103) <0.0001

Height (cm) 171.14 (9.96) (162–179.75) 171.14 (9.96) (162–179.75) –

BMI (kg/m2) 43.4 (5.51) (39–47.6) 31.18 (7.22) (26.68–33.95) <0.0001

Hip circumference (cm) 131.18 (14.6) (122–140) 110.35 (14.43) (101–116) <0.0001

Waist circumference (cm) 132.12 (18.2) (120–148) 103.57 (19.07) (94–115) <0.0001

Waist to hip ratio 1 (0.1) (0.9–1.1) 0.94 (0.11) (0.9–1) <0.0001

DEXA FM (%) 49.37 (4.44) (46.48–51.43) 33.35 (8.12) (27.1–38.85) <0.0001

DEXA FM (kg) 60.53 (13.27) (51.70 - 71.17) 29.48 (12.33) <0.0001

DEXA FFM (kg) 62.58 (11.99) (50.48–73.5) 56.11 (12.44) (45.18–67.25) <0.0001

HDL cholesterol (mg/dL) 46.98 (16.25) (37–50) 51.96 (15.68) (41.25–60.75) 0.089

LDL cholesterol (mg/dL) 113.28 (32.53) (95.25–130.75) 95.26 (37.04) (71.5–108) 0.001

Total cholesterol (mg/dL) 189.25 (29.72) (162.75–206.75) 163.42 (36.81) (138.5–188.25) <0.0001

Triglycerides (mg/dL) 153.16 (72.77) (109–184) 90.06 (51.17) (60–108) <0.0001

Plasma glucose (mg/dL) 116.18 (37.62) (96–125.25) 82.06 (15.58) (74–86) <0.0001

Plasma insulin (IU/mL) 30.1 (16.9) (17–42) 10.32 (6.57) (7–11.75) <0.0001

HOMA- IR 9.2 (6.93) (3.68–11.6) 2.16 (1.61) (1.25–2.5) <0.0001

AST (IU/L) 31.24 (17.48) (20–40.75) 23.02 (11.98) (16–27) 0.009

ALT (IU/L) 42.46 (27.72) (21.25–51.25) 25.7 (23.42) (14–32.25) 0.002

γGT (IU/L) 51.15 (86.34) (23.75–45.25) 22.65 (23.66) (12–23) 0.004

Albumin (g/L) 41.08 (2.97) (39–43) 41.21 (3.14) (38.75–43.25) 0.863

Platelets (109/L) 222.76 (52.87) (192 - 250) 202.71 (55.01) (166 - 226) 0.001

HbA1c (mmol/mol) 44.17 (10.96) (37 - 47) 36.94 (5.86) (34–38) <0.0001

PLIN2 MFI 4.4 (1.53) (3.2–5.5) 1.93 (0.75) (1.43–2.21) <0.0001

RAB14 MFI 7.02 (2.3) (5.45–8.28) 14.08 (4.85) (9.85–17.38) <0.0001

Elastography (kPa) 6.09 (1.47) (5.33–6.6) 5.04 (1.05) (4.5–5.58) <0.0001

NAFLD fibrosis score 0.28 (1.1) (−0.47–0.91) −0.98 (1.26) (−1.83–−0.19) <0.0001

AST to platelets ratio index 0.24 (0.05) (0.2–0.26) 0.24 (0.05) (0.21–0.27) <0.0001

FIB4 1.15 (0.6) (0.66–1.57) 1.25 (0.47) (0.87–1.58) 0.169

  n % n % P value

Gender (women) 22 44 – –

Diabetes 27 54 8 16 0.0002

Fibrosis 50 100 47 94 0.240

NASH 50 100 13 26 <0.0001

  n % n % P value

NAS 0 0 0 37 74 <0.0001

NAS 3 15 30 10 20

NAS 4 21 42 2 4

NAS 5 13 26 1 2

NAS 6 1 2 0 0

NAS 7 0 0 0 0

SAF- S 0 0 0 35 70 <0.001

SAF- S 1 15 30 9 18

SAF- S 2 27 54 6 12

SAF- S 3 8 16 0 0

SAF- A 0 0 0 1 2 <0.001

SAF- A 1 1 2 26 52

SAF- A 2 39 78 22 44

SAF- A 3 10 20 1 2

SAF- A 4 0 0 0 0

SAF- F 0 0 0 3 6 0.005

SAF- F 1 23 46 35 70

SAF- F 2 23 46 11 22

SAF- F 3 4 8 1 2

BMI, body mass index; DEXA FFM, Dual Energy X- Ray Absorptiometry Free Fat Mass; DEXA FM, Dual Energy X- Ray Absorptiometry Fat Mass; HbA1c, Haemoglobin A1c; HDL, high- density lipoprotein; HOMA- IR, 
Homeostasis Model Assessment of Insulin Resistance; LDL, low- density lipoprotein; MFI, mean fluorescence intensity; NAFLD, non- alcoholic fatty liver disease; NAS, Non- alcoholic Fatty Liver Disease Activity Score; NASH, 
non- alcoholic steatohepatitis; PLIN2, perilipin- 2; RYGB, Roux- en- Y gastric bypass; γGT, γ-Glutamyl Transferase.
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The algorithm with RAB14 outperformed currently used 
biomarkers of liver fibrosis, such as FIB4, NAFLD fibrosis score 
or AST- to- platelet ratio, and gave results comparable to those 
of elastography. Both PLIN2 and RAB14 algorithms diagnosed 
with accuracy a significant liver fibrosis (≥F2) in association with 
NASH severity (NAS ≥4), a rapidly worsening condition which 
represents the target for therapeutical RCTs. Finally, the new 
algorithms well predicted histological improvement of NASH 
and liver fibrosis after metabolic surgery, and thus they can be 
used not only as diagnostic but also as monitoring biomarkers. 
However, although the severity of liver fibrosis declined after 
metabolic surgery, the prevalence of SAF- F1 increased from 46% 
to 70%. This can explain why our algorithm including RAB14 as 
well as that with elastography had a reduced performance.

Our algorithm for NASH diagnosis and staging did not 
include BMI in order to avoid introducing a bias inherent to 
body weight. In fact, NASH is present also in subjects with 
normal weight as shown, for instance, in the GOASIA registry 
where the prevalence of NAFLD in subjects with a BMI <25 kg/
m2 ranged from 7.6% to 25.6% and a substantial proportion of 
these subjects (50.5%) had biopsy- proven NASH.40 In a meta- 
analysis, 39% of subjects with NAFLD and normal weight or 
overweight had NASH; 29.2% had stage ≥2 liver fibrosis; and 
3.2% had cirrhosis.41

Indeed, our algorithm showed a good sensitivity and speci-
ficity also in the validation cohort where the BMI was lower 
compared with the discovery cohort, with a range of 23.1–42.43 
kg/m2 vs 38.53–46.03 kg/m2.

We used the presence/absence of diabetes as a covariate in the 
NN analysis because of the high prevalence of NASH among 
patients with T2D. In fact, in a meta- analysis, the estimated 
prevalence of NASH among individuals with T2D was 37.3% 
(95% CI 24.7% to 50.0%) and that of advanced liver fibrosis 
17.0% (95% CI 7.2 to 34.8).42

Fibrosis is often associated with NASH and has important 
implications for clinical outcomes; therefore, an effective treat-
ment for NASH must, at least, prevent liver fibrosis progression.

In our study, the performance of RAB14 algorithm in diag-
nosing liver fibrosis presence and stages was comparable with 
that of ultrasound two- dimensional shear wave elastography.

Liver stiffness evaluated with elastographic techniques is 
expensive, operator- dependent and machine- dependent, and 
may be not feasible in patients with severe obesity when the 
skin–liver capsule distance is higher than 5 cm or in patients with 
thin intercostal spaces.43

Measuring PLIN2 and RAB14 in monocytes is inexpensive 
and scalable with up to 800 samples that can be analysed in a 
single day. Usually, immunophenotyping is performed in fresh 
blood or in polymorphonuclear cells the same day or within 
24 hours of collection. We demonstrated that cryopreserved is 
comparable to fresh blood for monocyte flow- cytometry studies 
making possible to postpone and centralise analyses.

PLIN2 and RAB14 may permit diagnosis of NASH and/or liver 
fibrosis with a simple blood test. Our biomarkers can be used in 
community and population studies permitting to investigate the 
real prevalence of NASH and liver fibrosis. Moreover, since it 
requires only blood sampling, they are potentially valuable tools 
for population- based and prevention studies in children.

Strengths of our multicentre study include that liver 
histology was available in all subjects. A limitation is that only 
Caucasian subjects were enrolled, thus limiting the generalis-
ability of our results to other ethnicities, although no differ-
ences between ethnicities are expected. Another limitation of 
our study is the different prevalence of liver fibrosis in the 

discovery (97%) and validation (67%) cohorts (p<0.001). To 
cope with this, we randomly split the whole database into a 
discovery and a validation set to obtain a balanced number of 
patients with and without fibrosis when a model was built to 
predict fibrosis while preserving the overall class distribution 
of the data.

In conclusion, new liquid biopsy tests that use peripheral blood 
monocyte PLIN2 and RAB14 as biomarkers were reliable in 
diagnosing NASH and/or liver fibrosis. PLIN2 and RAB14 have 
the potential to replace invasive liver biopsy- based histology for 
the diagnosis and management of NASH and liver fibrosis.

Due to the epidemic nature of metabolic liver diseases, rapid 
and cost- effectiveness tests for the diagnosis of NASH and liver 
fibrosis can permit the study of their prevalence in the general 
population and to monitor the effects of lifestyle, surgical and 
pharmacological interventions.
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