Inhibition of YTHDF1 by salvianolic acid overcomes gluten-induced intestinal inflammation

Coeliac disease (CD) is a chronic inflammatory and autoimmune disorder, primarily affecting the small intestine, developed in genetically susceptible individuals upon gluten ingestion. The only effective treatment so far is a lifelong, strict gluten-free diet. However, difficulties to follow dietary compliance can lead to complications, highlighting the unmet need for adjunct therapies.

Recently in Gut, we described a novel m6A-XPO1-NFXb pathway that is activated in patients with CD. Specifically, YTHDF1 m6A reader was found to selectively bind the 5’ UTR of XPO1 mRNA and induce its translation, increasing XPO1-mediated inflammation in intestinal cells both in vitro and in vivo. These findings opened the door to new therapeutic approaches directed to m6A machinery proteins, already in use for the treatment of other disorders.2

Interestingly, novel studies have described salvianolic acid (SAC) as a selective inhibitor of YTHDF1, which can rescue Fragile X syndrome linked defects in neural progenitor cells.3 In this study, we used our previously developed in vitro and in vivo gluten exposure models in order to test whether two forms of SAC (termed Y20 and Y22) could be used to ameliorate intestinal inflammation. Our in vitro data show a reduction of the pepsin-trypsin digested gliadin (PTG)-induced inflammation, represented by the enhanced XPO1, NFXb and IL8 was observed when incubated with the inhibitors (figure 1J). All these in vitro, in vivo and ex vivo results show that SAC based selective YTHDF1 inhibitors can help ameliorate gluten-induced intestinal inflammation.

In addition, we were able to show that both SAC forms do not show toxicity in our in vivo model. No significant changes were observed between control and treated mice regarding their size and weight. Moreover, no gastrointestinal effects could be detected in terms of diet consumption or faeces weight in treated mice groups (online supplemental figure 1C-E). In addition to the lymphocyte markers (figure 1H, online supplemental figure 1B), we could also confirm that our in vivo PTG stimulation activates an inflammatory response by the increased number of goblet cells present in the epithelial cells as well as eosinophil counts in the lamina propria (online supplemental figure 1F). In mice treated with PTG and either YTHDF1 inhibitor, these counts were reverted to control values, pointing again that these SAC molecules can, at least partially, protect from intestinal inflammation (online supplemental figure 1G). Interestingly, in another intestinal inflammatory scenario (on IFNG stimulation), both inhibitors also showed the ability to reduce inflammatory IL8 chemokine levels (online supplemental figure 1G), showing that these small molecules could also be useful in other gluten-independent intestinal inflammatory conditions.

To sum up, here, we present two different selective YTHDF1 inhibitors that have the ability to reduce gluten-induced inflammation in intestinal cells without apparent side effects in vivo. Although further exploration of other conventional CD pathways is still needed, this study paves the way for the development of promising therapeutic strategies for intestinal inflammatory disorders as CD.

Ane Olazagoitia-Garmendia,1,2 Henar Rojas-Márquez,3,2,3* Pamela Ruiz4 Aloña Agirre-Lizaso5 Yantao Chen6 Laura Herrero5,4,5 Dolores Serra,4,5,* Chang Lu7,8,13 Luis Bujanda,9,11,12 Chuan He14,15 Ainara Castellanos-Rubio1,2,3,16,17

1Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Leioa, Spain
2Biolabikal Research Institute, Barakaldo, Spain
3Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
4Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
5Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
6Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
7Research Centre for Experimental Marine Biology and Biotechnology (PE-UPV/EHU), University of the Basque Country, UPV/EHU, Plentzia, Spain
8BCTA Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV/EHU, Leioa, Spain
9Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-san Sebastian, Spain
10State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Beijing, China
11Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
12Centro de Investigación Biomédica en Red enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
13Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
14Department of Chemistry, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
15Howard Hughes Medical Institute, Chicago, Illinois, USA
16Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
17IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Correspondence to Dr Ainara Castellanos-Rubio, Genetics, Physical Anthropology and Animal Physiology, Unidad de Estudios del Pas de Vacas, University of the Basque Country, Spain; ainara.castellanos@ehu.eus

Twitter Henar Rojas-Márquez @HRMqz and Ainara Castellanos-Rubio @AinaCastellanos

Funding This study was supported by the Spanish Ministry of Science, Universities and Innovation (Grants PGC2018-097573-A-I00 to AC-R, and PID2020-114953RB-C21 to LH and DS cofunded by the European Regional Development Fund (ERDF)), the Biomedical Research Centre in Pathophysiology of Obesity and Nutrition (CIBEROBN) (G03/13001 to LH, the Merck Health Foundation (to LH), and the Government of Catalonia (2011SGR00367 to LH). CL was funded by National Administration of Traditional Chinese Medicine (ZYCYXDT-202004). CH
Figure 1 YTHDF1 inhibitors reduce gluten-induced intestinal inflammation. (A–B) HCT-116 intestinal cell line was left untreated (NT), treated with PTG or PTG and two different YTHDF1 inhibitors (PTG+Y20 and PTG+Y22). (A) XPO1 and p50 protein levels were quantified by western blot with GAPDH as loading control. (B) IL8 RNA and protein levels were quantified by RT-qPCR using RPLP0 as endogenous control and ELISA, respectively. n=4 (*p<0.05, **p<0.01 compared with control (NT), according to two-tailed Student’s t-test; #p<0.05 compared with PTG according to two-tailed Student’s t-test). (C–H) C57BL/6 mice on gluten-free diet were gavaged with PTG and cholera toxin (PTG) or together with a YTHDF1 inhibitor (PTG+Y20 and PTG+Y22) during 3 weeks, once a week. Control mice received only cholera toxin (CT). (C) Xpo1 RNA levels were quantified by RT-qPCR using Rplp0 as endogenous control. n≥7 (*p<0.05 according to one-tailed Student’s t-test). (D) p50 protein levels were quantified by western blot using GAPDH as loading control. n≥3. (+p<0.09 compared with control CT mice, according to one-tailed Student’s t-test; #p<0.05 compared with PTG mice, according to one-tailed Student’s t-test). (E) IL8 murine homolog Mip2a RNA levels were quantified by RT-qPCR using Rplp0 as endogenous control. n≥7 (*p<0.05 compared with control CT mice, according to one-tailed Student’s t-test; ##p<0.01, ###p<0.001 compared with PTG mice, according to one-tailed Student’s t-test). (F) H&E staining of small intestinal sections from CT (A) and PTG treated mice (B). (G) Villus height to crypt depth ratio to evaluate effects of gluten and YTHDF1 inhibitors on small intestinal epithelium morphometrics and for the histologic quantification of intestinal responses to disease process. n=4 (*p<0.05, **p<0.01 according to one-tailed Student’s t-test). (H) Il1g and CD45 RNA levels were quantified by RT-qPCR using Rplp0 as endogenous control. n≥7 (*p<0.05, **p<0.01 compared with control CT mice, according to one-tailed Student’s t-test; +p<0.09, #p<0.05 compared with PTG mice, according to one-tailed student’s t-test). (I–J) human intestinal biopsies from patients with CD at diagnosis were incubated with or without YTHDF1 inhibitors Y20 and Y22 for 24 hours. (I) XPO1 and p50 protein levels were quantified by western blot with GAPDH as loading control. (J) IL8 RNA levels were quantified by RT-qPCR using RPLP0 as endogenous control. n=5 (+p<0.09, *p<0.05, **p<0.01, ***p<0.001 compared with control (CT), according to one-tailed Student’s t-test). All values are mean±SEM.
is a Howard Hughes Medical Institute Investigator and has been funded by the National Institute of Health HG008935. AO-G was funded by postdoctoral fellowships from the University of the Basque Country (ESPDOC21/56). HR-M was funded by predoctoral grant from the Spanish Ministry of Science, Universities and Innovation (PRE2019-089350). Ciberelh is funded by the Instituto de Salud Carlos III.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and this study was approved by the Basque Country Ethics Committee CEIm-E with reference number PI2019133. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivatives on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Olazagoitia-Garmendia A, Rojas-Márquez H, Romero MdM, et al. Gut Epub ahead of print: [please include Day Month Year]. doi:10.1136/gutjnl-2023-330459

Received 9 June 2023
Accepted 11 October 2023

REFERENCES

SUPPLEMENTARY MATERIALS FOR
Inhibition of YTHDF1 by salvianolic acid overcomes gluten induced intestinal inflammation

SUPPLEMENTARY MATERIAL AND METHODS

Human patients and samples
All newly diagnosed adult CD patients had elevated TGA titers and displayed characteristic small intestinal histopathologic abnormalities, including villous atrophy, crypt hyperplasia and intraepithelial lymphocytosis. The samples were obtained after informed consent and using a protocol approved by the Donostia University Hospital. The study was approved by the Basque Country Clinical Research Ethics Board (CEIm-E ref. PI2019133) and analyses were performed after informed consent was obtained from all subjects. All experiments were performed in accordance with relevant guidelines and regulations. Biopsy specimens from the distal duodenum of each patient were obtained during routine diagnosis endoscopy. None of the patients suffered from any other concomitant immunological disease.

In vitro experiments
Intestinal HCT-116 (#91091005) cell line was purchased from Sigma-Aldrich (Poole, UK) and cultured in DMEM media (Lonza, Basel, Switzerland, #12-604F) supplemented with 10 % FBS (Millipore, Burlington, MA, USA #S0115), 100 units/ml penicillin and 100 μg/ml streptomycin (Lonza, #17-602E).

100,000 HCT-116 cells were plated and incubated o/n at 37°C. Next day cells were incubated with a low-dose of 30 μg/mL PT-Gliadin (PTG) or left untreated (NT) and incubated for 48 h. Then treatment with PTG at a final concentration of 350 μg/mL with or without SAC based YTHDF1 inhibitors (50 μM for Y20 and 20 μM for Y22) was performed. After 24 h supernatants and cells were harvested for further RNA and protein analysis.
In vivo experiments

Wild Type C57BL/6 JRj (Janvier Labs) mice were used for PTG stimulations. Breeders were maintained on GFD (Altromin #C1074) for at least 4 weeks, and experiments were performed using their progeny. 4 weeks after birth, mice were fasted overnight and then 500 μg PTG only, 500 μg PTG + 72 μM Y20 or 500 μg PTG + 30 μM Y22 was administered by oral gavage together with 25 ng Cholera toxin (CT) (Enzo Life Sciences, #BML-G117-000) to facilitate intestinal permeability. 25 ng CT were used for oral gavage in control mice. Each group of mice was housed in different cages to avoid PTG exposure through feces in control mice. Gavage treatments were done once a week for 3 weeks (F3.E) and mice were sacrificed 3 hours after the last gavage. Duodenum was dissected, perfused with sterile PBS to remove intestinal content and then sectioned and lysed for subsequent RNA and protein extraction.

Organ culture experiments

3 biopsy specimens from the same individual were incubated at 37°C in RPMI media (Gibco, #21875-34) supplemented with 10 % FBS (Millipore, #S0115), 4 mM L-Glutamine (Gibco, #25030-081), 1 mM sodium pyruvate (Lonza, #13-115E), 20 mM Hepes (Lonza, #17-737E), 100 U/mL penicillin/streptomycin (Lonza, #17-602E) and 0.1 U/mL bovine insulin (Sigma-Aldrich, #I0516) alone or with the addition of 50 μM Y20 or 20 μM Y22 inhibitors. After 24h media was collected and biopsies were flash frozen for further RNA and protein expression analysis.
SUPPLEMENTARY FIGURES

Supplementary Figure 1. YTHDF1 inhibitors ameliorate inflammation with no toxicity in vivo. A) IL8 murine homologues Cxcl5 and Cxcl1 and B) Il21 RNA levels were quantified by RT-qPCR using Rplp0 as endogenous control. n≥7 (*p<0.05 compared to control CT mice, according to one-tailed Student’s t test; †p<0.09, ‡p<0.05, compared to PTG mice, according to one-tailed Student’s t test). C-F) The effect of gluten gavage and YTHDF1 inhibitors in mice was measured. C) Diet consumption and D) mice weight quantified in different time-points, both before (day 6) and after gavage treatments. n≥7. Values represent means per group. E) Feces weight before first treatment (day 6) and after gavage treatment (day 15). n≥7 (#p<0.05 compared to PTG after treatment according to two-way ANOVA test). F) Summary table of immune cell infiltration in lamina propri a, goblet cells in epithelial tissue and eosinophils in lamina propria counts from hematoxylin-eosin staining of small intestinal sections from CT, PTG, PTG+Y20 and PTG+Y22 mice. G) HCT-116 intestinal cells were left untreated (NT), treated with interferon gamma (IFNG) or IFNG and the two different YTHDF1 inhibitors (IFNG+Y20 and IFNG+Y22). IL8 RNA and protein levels were quantified by RT-qPCR using RPLP0 as endogenous control and ELISA,
respectively. n=2-3 (*p<0.05 compared to control NT, according to one-tailed Student's t test; +p<0.09, ##p<0.01 compared to IFNG according to two-tailed Student's t test).