RT Journal Article SR Electronic T1 Inhibitory effect of unconjugated bile acids on the intestinal transport of 5-methyltetrahydrofolate in rat jejunum in vitro. JF Gut JO Gut FD BMJ Publishing Group Ltd and British Society of Gastroenterology SP 1376 OP 1379 DO 10.1136/gut.25.12.1376 VO 25 IS 12 A1 Said, H M A1 Hollander, D A1 Strum, W B YR 1984 UL http://gut.bmj.com/content/25/12/1376.abstract AB The effect of the unconjugated bile acids, cholic, deoxycholic, chenodeoxycholic, and ursodeoxycholic acids, and of the conjugated bile acid taurocholic acid on the mucosal-to-serosal transport and tissue uptake of the naturally occurring folate derivative, 5-methyltetrahydrofolate (5-CH3H4PteGlu) was examined in everted sacs of rat jejunum. Each of the unconjugated bile acids examined inhibited the transport and tissue uptake of 5-CH3H4PteGlu in a concentration dependent manner. At low concentrations (0.01-0.1 mM) of cholic and deoxycholic acids, no structural or functional damage to the intestinal mucosa occurred and the transport of 5-CH3H4PteGlu was inhibited competitively with Ki values of 0.114 mM and 0.055 mM for cholic and deoxycholic acids, respectively. The greater inhibition of 5-CH3H4PteGlu transport by unconjugated bile acids at 1 mM can be attributed to observed structural and functional damage to the intestinal mucosa. The addition of 2 mM lecithin to the mucosal medium failed to prevent the inhibitory effect of 0.1 mM deoxycholic acid on the transport of 0.5 microM 5-CH3H4PteGlu. Compared with the effect of unconjugated bile acids, the conjugated bile acid taurocholic acid (0.01-5 mM) showed no effect on the transport and tissue uptake of 5-CH3H4PteGlu. The results of this study show that intestinal transport and tissue uptake of 5-CH3H4PteGlu are inhibited by unconjugated bile acids in a dose-dependent fashion. The clinical and physiological implications of these observations are discussed.