TY - JOUR T1 - A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey JF - Gut JO - Gut SP - 140 LP - 149 DO - 10.1136/gutjnl-2017-314870 VL - 68 IS - 1 AU - Xuesong Wang AU - Yu Yan AU - Tianyu Gan AU - Xi Yang AU - Dapeng Li AU - Dongming Zhou AU - Qiang Sun AU - Zhong Huang AU - Jin Zhong Y1 - 2019/01/01 UR - http://gut.bmj.com/content/68/1/140.abstract N2 - Objective Despite the development of highly effective direct-acting antivirals, a prophylactic vaccine is needed for eradicating HCV. A major hurdle of HCV vaccine development is to induce immunity against HCV with high genome diversity. We previously demonstrated that a soluble E2 (sE2) expressed from insect cells induces broadly neutralising antibodies (NAbs) and prevents HCV infection. The objective of this study is to develop a multivalent HCV vaccine to increase the antigenic coverage.Design We designed a trivalent vaccine containing sE2 from genotype 1a, 1b and 3a. Mice and rhesus macaques were immunised with monovalent or trivalent sE2 vaccine, and sera or purified immunoglobulin were assessed for neutralisation against a panel of cell culture-derived virion (HCVcc) of genotype 1–7 in cell culture. Splenocytes from the vaccinated macaques were assessed for HCV-specific T cell response.Results We showed that the trivalent vaccine elicited pangenotypic NAbs in mice, which neutralised HCVcc of all the seven genotypes more potently than the monovalent vaccine. Further analyses demonstrated that each sE2 component of this trivalent vaccine elicited unique spectrum of NAbs which acted synergistically to inhibit HCV infection. Finally, the trivalent vaccine triggered stronger and more uniform multigenotypic neutralising antibody response than the monovalent vaccine in rhesus macaques.Conclusions In summary, we developed a trivalent HCV vaccine that induces broad and synergistic-acting neutralising antibodies in mice and non-human primates. ER -