TY - JOUR T1 - Great escape: how infectious SARS-CoV-2 avoids inactivation by gastric acidity and intestinal bile JF - Gut JO - Gut SP - 808 LP - 810 DO - 10.1136/gutjnl-2021-326624 VL - 72 IS - 4 AU - Malak A Esseili Y1 - 2023/04/01 UR - http://gut.bmj.com/content/72/4/808.abstract N2 - The study by Lee et al 1 showed that the short-term current use of proton pump inhibitors (PPIs) for less than 1 month was associated with severe clinical outcomes for patients with COVID-19. The authors speculated that individuals taking PPIs had increased gastric pH, leading to higher SARS-CoV-2 viral loads associated with a severe course of COVID-19. Many studies suggested that a proportion of patients with COVID-19 experiencing GI symptoms such as diarrhoea, nausea and vomiting had overall more severe disease.2 However, it is not clearly understood how SARS-CoV-2 could survive the passage through the harsh gastric acidity and persist through the intestinal contents to infect the intestinal epithelia. It is known that the gastric pH varies greatly, depending on whether the individual is in a fasting or feeding state (between 1.23 and 6.7, respectively).3 Similarly, bile concentrations in the small intestine can fluctuate from as low as 2.6 mM in fasted state to over 15 mM in the fed state.4 Whether changes in gastric pH and bile allow the virus to escape gastric and intestinal inactivation to infect the intestine is not well understood. Therefore, to understand the effect of stomach acidity, digestive components and meals on the infectivity of swallowed SARS-CoV-2, the virus ~6 log 50% tissue infective dose (TCID50)/mL was incubated at 37°C for 60 min in simulated gastric fluid of different pH (1.5–6.0), pepsin (0–8 mg/mL), … ER -