Supplement 1: Methodology - GDG and extended-Delphi Group - PICOs - Systematic review flowchart - GRADE tables # **Guideline development group (GDG)** ### ACPGBI - Michael Davies (Co-chair) - Muti Abulafi - Ayan Banarjea - Michael Machesney - Bob Steele ### BSG - Kevin Monahan (Co-chair) - Ramesh Arasaradnam - James East #### **General Practice** - Brain Nicholson - · Lance Saker ### Clinical Biochemistry Sally Benton #### **Patient Advocates** - Neil Barker - · Jenny Pipe #### **Colorectal Nursing** Maria Pettman ### Guideline Methodologist Jos Kleijnen # Epidemiology · Linda Sharp # Radiology BSGAR - David Burling - James Stephenson #### Clinical Fellows - Nigel D'Souza - Rachel Carten - Richard Booth # **Extended Delphi Participants** ### A) Gastroenterology: - 1) Colin Rees - 2) Matt Rutter - 3) Robert Logan - 4) James Turvill - 5) Sunil Dolwani (- 6) Jeff Turner - 7) Raji Ramaraj - 8) Stephen McSorley - 9) Jack Winter - 10) Colin Noble - 11) Conor Lahiff - 12) Jan Leyden - 13) Glen Doherty - 14) Ash Bassi - 15) Craig Mowat ### B) Colorectal Surgery: - 1) Dean Harris - 2) Michael Thornton - 3) Jared Torkington - 4) Damian Mckay - 5) David Humes - 6) Barry McAree - 7) Jack Lee - 8) Ronan Cahill - 9) Malcolm Dunlop - 10) Michelle Thornton (SIGN) ### C) General Practice: - 1) Thomas Round - 2) Willie Hamilton - 3) Heetan Patel - 4) Jane Armstrong - 5) Rachel Lee - 6) Mary Craig - 7) Gail Allsopp (RCGP) - 8) Joseph Lee - 9) Sam Hilton - 10) Jo Thomson - 11) Peter Holloway - 12) Chris Tasker - 13) Nicola Weaver - 14) Lyndsey Williams - 15) Tina George - 16) Sarah Taylor - 17) Katherine Elliot - 18) Ben Noble - 19) Richard Roope # D) Radiology: - 1) TAYLOR, Stuart, BSGAR outgoing president - 2) TOLAN, Damian - 3) PLUMB, Andrew - 4) Britton, Ingrid - 5) Williams, Stuart ### E) Biochemistry: - 1) Callum Fraser - 2) Judith Strachan - 3) Ian Godber - 4) Catherine Bailey - 5) John Geen - 6) Ruth Ayling #### F) Nursing: - 1) Harriet Watson - 2) Dana Knoyle ### G) Patients: - 1) Stephen Mawson - 2) Nannette Spain - 3) Robin Bainton - 4) Monica Jefford ### H) Charities: - 1) Lisa Wilde, Bowel Cancer UK - 2) Jodie Moffat, Cancer Research UK - 3) Lesley Booth, Bowel Research UK **PICOs** # PICO 1: Diagnostic utility of FIT in patients with a suspicion of CRC | Population | Intervention | Comparisons | Outcome | |------------------------------------|------------------------------------|----------------------------------|------------------------------------| | Patients with signs or symptoms of | Pathways including FIT | Pathways not including FIT | Patient reported outcomes: | | suspected CRC (CRC) | testing in primary care to: | testing in primary care . | a. Critical for decision making | | | a. triage patients for referral | | i. Overall survival | | | to secondary care (2WW | Specialist investigation: | ii. Disease free survival | | | / urgent / routine / safety | i. Direct colonoscopy | iii. Progression free survival | | | netting / none) | ii. CT Colonography | iv. Morbidity related to tests in | | | | iii. Flexible sigmoidoscopy | those without bowel disease | | Subgroups: | Subgroups: | iv. Colon Capsule | v. Quality of Life | | a. Patient factors: | a. FIT Threshold | v. Composite of specialist | b. Important for decision making | | i.Age | i. Value (ug/g) | investigations | i. Serious adverse effects | | ii. Ethnicity | ii.Single or multiple (e.g. | vi. Other | ii. Time intervals to diagnosis | | iii.Gender | for population | | (consultation -> FIT -> referral - | | iv. Deprivation | subgroup) | Clinical records follow-up: | > diagnosis -> treatment) | | v.Geography | | i.6 months | , | | vi.Smoking | b. FIT Interpretation | ii.12 months | | | vii. BMI | i. alone | iii.18 months | iii. Complications – e,g, physical | |------------------------------------|-----------------------------|---------------|--| | viii. Anticoagulants/antiplatelets | ii. plus clinical | iv.24 months | functioning / incontinence / | | ix. Family history | assessment | v.Other | stoma | | x. Previous whole colon | iii. plus simple | | iv. Recurrence | | investigation | biomarkers | | | | xi. Other | iv.plus safety netting | | Surrogate/Intermediate outcomes: | | | protocol | | a. Critical for decision making | | b. Specific symptoms/signs: | v.incorporated into a | | i. Diagnostic accuracy | | i. PR Bleeding | prediction model | | ii. Changes in treatment offered | | ii. Change in bowel habit | | | iii. Stage at diagnosis (% stage I & | | i. Overall | c. FIT laboratory platform: | | II) | | ii. Constipation | i.Individually (OC- | | iv. Route to diagnosis (all | | iii. Diarrhoea | Sensor, HM- | | categories) | | iii. Abdominal mass | JACKarc, FOB Gold, | | - 2WW referral | | iv. Abdominal pain | other) | | - Urgent referral | | v. Unexplained Weight loss | ii. Combined | | | | vi. Palpable Rectal mass | Pathways including FIT | Pathways not including FIT | - Routine referral | |------------------------------------|--------------------------------------|------------------------------------|--| | vii. Anal mass / anal ulceration | testing in secondary care to: | testing in secondary care . | Emergency presentation | | viii. Other | a. counsel patient on | | v. Number needed to (scope / | | | decision/need to | Specialist investigation: | CTC) to detect one cancer | | c. Specific blood abnormalities | investigate | i.Direct colonoscopy | vi. Patient acceptability / | | i.IDA | b. determine choice of | ii.CT Colonography | reassurance | | ii. Broad anaemia | investigation (urgent / | iii.Flexible sigmoidoscopy | b. Important for decision making | | iii. Thrombocytosis | convert to routine with | iv.Colon capsule | i. Improved diagnostic pathway | | iv. Hyper-ferritinaemia | GP consent) | v.Composite of specialist | elements | | v. Other | c. select patients for one- | investigations | ii. Length of stay in hospital | | | stop investigation | vi.Other | iii. Clinician acceptability | | d. Clinically stratified | (endoscopy with | | iv. Number of tests performed | | i.Any symptoms/signs of | dedicated radiology | Clinical records follow-up: | per patient | | concern | staging slots) | i.6 months | | | ii. High-risk (e.g. NG12 criteria) | | ii.12 months | | | iii. Low-risk (e.g. DG30 criteria) | Subgroups: | iii.18 months | | | | a. FIT Threshold | iv.24 months | | | | i. Value (ug/g) | v.Other | | | | | | | | | | | | | | | | | | ii. Single or multiple (e.g. | | | | | |------------------------------|-------------|--|--|--| | for | population | | | | | subgrou | ıp) | | | | | | | | | | | b. FIT Interpretation | | | | | | i.alone | | | | | | ii. plus | clinical | | | | | assessment | | | | | | iii. plus | simple | | | | | biomarl | biomarkers | | | | | vi.plus safe | ty netting | | | | | protoco | ol | | | | | iv.incorporate | ed into a | | | | | predicti | on model | | | | | | | | | | | c. FIT laboratory | platform: | | | | | i. Individually | (OC- | | | | | Sensor, | HM- | | | | | JACKard | , FOB Gold, | | | | | other) | | | | | | ii. Combined | | |--------------|--| PICO 2: What mechanisms may be employed to avoid delayed diagnosis in patients with FIT negative CRC? | Population | Intervention | Comparison | Outcome | |--------------------------------|--------------------------------------|-----------------|--| | | | | Patient reported outcomes: | | Patients with a negative FIT | Referral (urgent / routine) in | Watch and wait | a. Critical for decision making | | Patients who do not return FIT | selected subgroups (demographics | in primary care | i. Overall survival | | | / symptoms /blood results). | | ii. Disease free survival | | Subgroups: | | No safety | iii. Progression free survival | | a. Patient factors: | Repeat FIT testing (frequency and | netting | iv. Morbidity related to tests in those | | i. Age | interval) | | without bowel disease | | ii. Ethnicity | | Single FIT test | v. Quality of Life | | iii. Gender | Safety netting (as defined by study) | | b. Important for decision making | | iv. Deprivation | | An alternative | i. Serious adverse effects | | v. Geography | Clinical assessment | intervention | ii. Time to diagnosis (consultation -> FIT - | | vi. Previous whole colon | | | > referral -> diagnosis -> treatment) | | investigation | Use of other simple tests | | iii. Complications – e,g, physical | | b. Ongoing / no ongoing | i. Platelets | | functioning / incontinence / stoma | | symptoms | ii. Haemoglobin | | iv. Recurrence | | c. Referred / not referred. | iii.MCV | | | | | iv. Ferritin | | Surrogate/Intermediate Outcomes: | | v.CRP | c. Critical for decision making | |----------|---| | vi.Other | i. Diagnostic accuracy | | | ii. Changes in treatment offered | | | iii. Stage at diagnosis | | | iv. Route to diagnosis (all categories) | | | - 2WW referral | | | - Urgent referral | | | - Routine referral | | | - Emergency presentation | | | v. Number needed to (scope / CTC) to | | | detect one cancer | | | vi. Patient acceptability / reassurance | | | d. Important for decision making | | | i. Improved diagnostic pathway | | | elements | | | ii. Length of stay in hospital | | | iii. Clinician acceptability | | | iv. Number of tests performed per | | | patient | | | | # PICO 3: FIT and equality and access to care - 1) What is the acceptability of FIT in patients with suspected CRC symptoms and their treating clinicians? - 2) How can we avoid discriminating against certain populations in this guideline? - 3) What lessons may be learned from implementation programmes of FIT in symptomatic populations? May need to develop non-PICO model for this topic | Population | Intervention | Comparison | Outcome | |-----------------------
------------------|------------------------------|--------------------------------| | Patients with | FIT testing | Direct – | PRO | | symptoms of suspected | 。Qualitative | Specialist investigation: | Critical for decision making | | CRC | outcomes | i. Direct colonoscopy | i. Overall survival | | o Subgroups: | ∘ Uptake in | ii. CT Colonography | ii. Disease free survival | | - Patient - Age, | subgroup | iii. Flexible | iii. Progression free survival | | ethnicity, gender, | populations | sigmoidoscopy | iv. Morbidity (to be decided | | language, | o Implementation | iv. Colon Capsule | what is included) | | deprivation | | v. Composite of | v. Quality of Life | | - Learning disability | | specialist
investigations | Important for decision making | | - Hearing or sight | | vi. Other | i. Serious adverse effects | | impaired | | | ii. Time to diagnosis | | - Accessibility other | | | | | | | | | iii. | Physical | fu | nctioni | ng | / | |-----------------------|--|--|--|--|--|--|----|-----|--------|---------------|-------|----------|------|------| | e.g. housebound, | | | | | | | | | | incontine | nce | / stoma | 9 | | | travel | | | | | | | | | iv. | Recurren | ce | | | | | - Other physical | | | | | | | | | Unir | nportant fo | r de | cision n | naki | ing | | conditons | | | | | | | | | ٧. | Costs, # c | f col | onosco | pie | :S | | - Symptoms: High vs | | | | | | | | | vi. | Adverse | effe | cts ind | clud | ling | | low-risk | | | | | | | | | | psycholog | gical | | | | | | | | | | | | | | vii. | Satisfacti | on | | | | | | | | | | | | In | erm | ediate | es | | | | | | | | | | | | | | • | Critic | al for decisi | on n | naking | | | | | | | | | | | | | • | Diagnosti | c ac | curacy | | | | | | | | | | | | | • | Changes | in | trea | atm | ent | | | | | | | | | | | | offered | | | | | | | | | | | | | | | • | Stage at o | diagr | osis | | | | | | | | | | | | | • | Route t | 0 0 | liagnosi | is | (all | | | | | | | | | | | | categorie | s) | | | | | | | | | | | | | | • | Number | r | needed | | to | | | | | | | | | | | | (colono)s | cope | e / CTC | • Patient acceptability | |--|--| | | (combine with | | | reassurance) | | | Important for decision | | | making | | | • Improved diagnostic | | | pathway elements | | | Length of stay in hospital | | | • Reassurance / time to | | | reassurance / time to | | | diagnostic resolution | | | Clinician acceptability | | | Number of tests performed | | | Critical: | | | CRC diagnostic accuracy | | | • Time to diagnosis | | | • Earlier diagnosis (stage shift) | | | | | | Important: | | | Prioritising investigations | |--|---| | | Morbidity of interventions | | | Reduced CRC Morbidity | | | Develop patient pathway to diagnosis | | | | | | Lower importance | | | Predicted resource impact | | | • SBD: Polyps – advanced / non-advanced | | | • Other SBD | | | | Figure S1: Flowchart of systematic review of evidence # **GRADE Tables** Table 1: Should Faecal immunochemical test be used to diagnose colorectal cancer in patients with all symptoms (NG12, DG30 or NC)? | Sensitivity | y | 0.90 (95% | 6 CI: 0.88 | to 0.92) | | | Dro | valences | 4.2% | 1.1% | 13.6 | 0/ | | |--|-------------------|----------------------|--------------------------|----------------------|----------------------|---------------|-------|----------------------|------------------------------------|---------------|--------------------------------|-----------------------------------|-----| | Specificity | / | 0.76 (95% | 6 CI: 0.71 | to 0.80) | | | rie | valences | 4.2/0 | 1.1/0 | 15.0 | 70 | | | | № of
studies | | Fact | ors that ma | y decrease ce | rtainty | of ev | vidence | Effec | | ,000 p
sted | | | | Outcom
e | (Nº of patient s) | Study | Risk of
bias | Indirectne
ss | Inconsisten
cy | Impre
on | | Publicati
on bias | pre-tes
probabi
ty
of4.2% | ili pro | e-test
babili
ty
1.1% | pre-tes
probab
ty
of13.6 | ili | | True positives (patients with colorect al cancer) | | type
accurac
y | seriou
s ^a | serious ^b | serious ^c | not
seriou | S | none | 38 (37 to 39) | o 10 (
10) | | 122 (12
to 125) | | | False
negative
s
(patients
incorrect
ly
classified
as not | | study) | | | | | | | 4 (3 to 5 | 5) 1 (1 | . to 1) | 14 (11 t | 10 | | | Nº of studies | | Fact | ors that ma | y decrease ce | rtainty of ev | vidence | Effect | per 1,000 p
tested | atients | | |--|--|--|--------------------------|----------------------|----------------------|-----------------|----------------------|---------------------------------------|---------------------------------------|--|-------------------| | Outcom
e | (Nº of patient s) | Study
design | Risk of
bias | Indirectne
ss | Inconsisten
cy | Imprecisi
on | Publicati
on bias | pre-test
probabili
ty
of4.2% | pre-test
probabili
ty
of1.1% | pre-test
probabili
ty
of13.6% | Test accuracy CoE | | having
colorect
al
cancer) | | | | | | | | | | | | | True negative s (patients without colorect al cancer) | 15
studies
35782
patient
s | cross-
section
al
(cohort
type
accurac
y
study) | seriou
s ^a | serious ^b | serious ^c | not
serious | none | 728 (680
to 766) | 752 (702
to 791) | 657 (613
to 691) | ⊕○○○
Very low | | False positives (patients incorrect ly classified as having colorect | | | | | | | | 230 (192
to 278) | 237 (198
to 287) | 207 (173
to 251) | | | | | Nº of | | Fact | ors that may | y decrease ce | rtainty of ev | vidence | Effect | per 1,000 p
tested | atients | | |-----------|------------|------------------------------------|-----------------|-----------------|------------------|-------------------|-----------------|----------------------|---------------------------------------|---------------------------------------|--|-------------------| | Ou | utcom
e | studies
(Nº of
patient
s) | Study
design | Risk of
bias | Indirectne
ss | Inconsisten
cy | Imprecisi
on | Publicati
on bias | pre-test
probabili
ty
of4.2% | pre-test
probabili
ty
of1.1% | pre-test
probabili
ty
of13.6% | Test accuracy CoE | | al
car | ncer) | | | | | | | | | | | | - a. Studies were judged at a high risk of bias in patient selection. - b. Results based on indirect comparisons from different studies; direct evidence about impact on patient-important outcomes - c. Significant heterogeneity detected Footnote: CoE = certainty of evidence ### References - 1.Chapman, C, Thomas, C, Morling, J, Tangri, A, Oliver, S, Simpson, J A, Humes, D J, Banerjea, A. Early clinical outcomes of a rapid colorectal cancer diagnosis pathway using faecal immunochemical testing in Nottingham. Colorectal Disease; 2020. - 2.D'Souza, N, Delisle, T G, Chen, M, Benton, S C, Abulafi, M, Committee, Nice Fit Steering. Faecal immunochemical testing in symptomatic patients to prioritize investigation: diagnostic accuracy from NICE FIT Study. British Journal of Surgery; 2021. - 3.D'Souza, N, Hicks, G, Benton, S C, Abulafi, M. The diagnostic accuracy of the faecal immunochemical test for colorectal cancer in risk-stratified symptomatic patients. Annals of the Royal College of Surgeons of England; 2020. - 4.Farrugia, A, Widlak, M, Evans, C, Smith, S C, Arasaradnam, R. Faecal immunochemical testing (FIT) in symptomatic patients: What are we missing?. Frontline Gastroenterology; 2020. - 5.Godber, I M, Todd, L M, Fraser, C G, MacDonald, L R, Younes, H B. Use of a faecal immunochemical test for haemoglobin can aid in the investigation of patients with lower abdominal symptoms. Clinical Chemistry and Laboratory Medicine; 2016. - 6.Herrero, J M, Vega, P, Salve, M, Bujanda, L, Cubiella, J. Symptom or faecal immunochemical test based referral criteria for colorectal cancer detection in symptomatic patients: A diagnostic tests study. BMC Gastroenterology; 2018. - 7.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. - 8.McSorley, S, Witherspoon, P, Rigg, D, Burton, P, Winter, J. A colorectal referral pathway incorporating primary care faecal haemoglobin testing safely and effectively prioritises investigation. Gut; 2021. - 9.Mowat, C, Digby, J, Strachan, J A, Wilson, R, Carey, F A, Fraser, C G, Steele, R J C. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut; 2016. - 10.Laszlo, Helga E., Seward, Edward, Ayling, Ruth M., Lake, Jennifer, Malhi, Aman, Stephens, Clare, Pritchard-Jones, Kathy, Chung, Donna, Hackshaw, Allan, Machesney, Michael. Faecal immunochemical test for patients with 'high-risk' bowel symptoms: a large prospective cohort study and updated literature review. British Journal of Cancer; 2021/12/13. - 11. Morales Arraez, D E, Hernandez, G, Carrillo, M, Adrian, Z, Gimeno, A Z, Quintero, E. Role of faecal immunochemical testing in the diagnostic workup of patients with iron deficiency anaemia. United European Gastroenterology Journal; 2018. - 12. Turvill, J. L., Turnock, D., Cottingham, D., Haritakis, M., Jeffery, L., Girdwood, A., Hearfield, T., Mitchell, A., Keding, A.. The Fast Track FIT study: Diagnostic accuracy of faecal immunochemical test for haemoglobin
in patients with suspected colorectal cancer. British Journal of General Practice; 2021. - 13.Rodriguez-Alonso, L., Rodriguez-Moranta, F., Ruiz-Cerulla, A., Lobaton, T., Arajol, C., Binefa, G., Moreno, V., Guardiola, J.. An urgent referral strategy for symptomatic patients with suspected colorectal cancer based on a quantitative immunochemical faecal occult blood test. Dig Liver Dis; Sep 2015. - 14. Navarro, M, Hijos, G, Sostres, C, Lue, A, Puente-Lanzarote, J J, Carrera-Lasfuentes, P, Lanas, A. Reducing the Cut-Off Value of the Fecal Immunochemical Test for Symptomatic Patients Does Not Improve Diagnostic Performance. Frontiers in Medicine; 2020. - 15. Tsapournas, G, Hellstrom, P M, Cao, Y, Olsson, L I. Diagnostic accuracy of a quantitative faecal immunochemical test vs. symptoms suspected for colorectal cancer in patients referred for colonoscopy. Scandinavian Journal of Gastroenterology; 2020. Table 2: Flexible sigmoidoscopy compared to FIT (if negative) for referral of patients with persistent / recurrent rectal bleeding Setting: Secondary care | | | | Certainty ass | essment | | | | | | |------------------|--------------|--------------|---------------|--------------|-------------|----------------------|--------|-----------|------------| | Nº of
studies | Study design | Risk of bias | Inconsistency | Indirectness | Imprecision | Other considerations | Impact | Certainty | Importance | Under-detection of CRC (assessed with: FIT) | | | | Certainty ass | essment | | | | | | |---------------|--------------------------|----------------------|---------------|----------------------|----------------------|--|--|-------------------|------------| | Nº of studies | Study design | Risk of bias | Inconsistency | Indirectness | Imprecision | Other considerations | Impact | Certainty | Importance | | 1 | observational
studies | serious ^a | not serious | serious ^b | serious ^c | strong association all plausible residual confounding would reduce the demonstrated effect | We recommend referral of patients with persistent / recurrent rectal bleeding for flexible sigmoidoscopy if FIT is negative. In patients with rectal bleeding and undetectable f-Hb the use of flexible sigmoidoscopy can reduce the probability of undetected CRC to 0.03%. | ⊕○○○
Very low¹ | CRITICAL | ### CI: confidence interval # **Explanations** - a. D'Souza was judged at a high risk of bias in patient selection. - b. Direct evidence about impact on patient-important outcomes was missing - c. Wide confidence intervals for sensitivity in NRB for >10 # References 1. Hicks, G, D'Souza, N, Georgiou Delisle, T, Chen, M, Benton, S C, Abulafi, M. Using the faecal immunochemical test in patients with rectal bleeding: evidence from the NICE FIT study. Colorectal Disease; 2021. 2.D'Souza, N., Monahan, K., Benton, S. C., Wilde, L., Abulafi, M., Group, Nice Fit Steering. Finding the needle in the haystack: the diagnostic accuracy of the faecal immunochemical test for colorectal cancer in younger symptomatic patients. Colorectal Disease; 2021. Table 3: Should FIT threshold of ≥10µg vs. be used for be used to diagnose in referral for CRC investigation? | Sensitivity | | 0.91 (95% (| CI: 0.85 to (| 0.94) | | | Drovalonaco | 1 10/ | 0.00/ | 1 00/ | , | |-------------|---------|-------------|---------------|-------------|----------------|----------|-------------|-------|-------|-------|------| | Specificity | | 0.71 (95% (| CI: 0.57 to (|).82) | | | Prevalences | 1.1% | 0.8% | 1.8% |) | | | Nº of | | Fac | tors that m | ay decrease ce | ertainty | of evidence | | Effec | t per | 1,00 | | | studies | Study | | | | | | | nro-t | oct | nr | | | Nº of | | Fá | actors that ma | ay decrease cer | tainty of evid | dence | Effect per | 1,000 patie | nts tested | | |---|-----------------------------------|---------------------|-----------------|------------------|-------------------|-----------------|----------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------| | Outcome | studies
(№ of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of1.1% | pre-test
probabilit
y of0.8% | pre-test
probabilit
y of1.8% | Test
accuracy
CoE | | False positives (patients incorrectl y classified as having) | | accurac
y study) | | | | | | 287 (178
to 425) | 288 (179
to 427) | 285 (177
to 422) | | - a. Studies were judged at a high risk of bias in patient selection. - b. Results based on indirect comparisons from different studies; direct evidence about impact on patient-important outcomes - c. Significant heterogeneity detected Footnote: CoE = certainty of evidence ## References - 1.Chapman, C, Bunce, J, Oliver, S, Ng, O, Tangri, A, Rogers, R, Logan, R F, Humes, D J, Banerjea, A. Service evaluation of faecal immunochemical testing and anaemia for risk stratification in the 2-week-wait pathway for colorectal cancer. BJS Open; 2019. - 2.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. - 3.McSorley, S T, Digby, J, Clyde, D, Cruickshank, N, Burton, P, Barker, L, Strachan, J A, Fraser, C G, Smith, K, Mowat, C, Winter, J, Steele, R J C. Yield of colorectal cancer at colonoscopy according to faecal haemoglobin concentration in symptomatic patients referred from primary care. Colorectal Disease; 2021. - 4.Mowat, C, Digby, J, Strachan, J A, Wilson, R, Carey, F A, Fraser, C G, Steele, R J C. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut; 2016. Table 4: Should OC-sensor vs. HM JACK-arc be used to diagnose CRC in patients with all symptoms (NG12, DG30 or NC)? | OC-sensor | | HM JACK-a | rc | |-------------|--------------------------------|-------------|--------------------------------| | Sensitivity | 0.90 (95% CI: 0.86
to 0.93) | Sensitivity | 0.90 (95% CI: 0.87
to 0.92) | | Specificity | 0.74 (95% CI: 0.68
to 0.79) | Specificity | 0.78 (95% CI: 0.69
to 0.85) | | Prevalences | 4.2% | 1.1% | 13.6% | | |-------------|------|------|-------|--| | | | | | | | Outcom | Nº of
studies
(Nº of | Study | Fact | ors that ma | y decrease ce | ertainty of e | vidence | pre-
proba
of4. | test
bility | r 1,000
pre-
proba
of1. | test
bility | pre-
proba
of13 | test
bility | Test accuracy CoE | |--------------------------|-----------------------------------|------------------------------------|--------------------|----------------------|----------------------|-----------------|----------------------|------------------------|------------------------|----------------------------------|------------------------|---------------------------|---------------------------|--| | е | patient
s) | design | Risk
of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | , , , | | True positive s (patient | 13
studies
34813
patient | cross-
section
al
(cohort | not
serio
us | serious ^a | serious ^b | not
serious | none | 38
(36
to
39) | 38
(37
to
39) | 10 (9
to
10) | 10
(10
to
10) | 122
(117
to
126) | 122
(118
to
125) | ⊕⊕○○
Low ^{1,2,3,4,5,6,7,8,9,10,11}
,12,13 | | s with
CRC) | S | type
accura | | | | | | 0 fewer | | 0 fewer | | 0 fewer | | | | | | | | | | | | Eff | ect pe | r 1,000 | patier | nts test | ed | | |--|-----------------------------------|----------------|--------------------|----------------------|----------------------|-----------------|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------| | Outcom | Nº of
studies
(Nº of | Study | Fact | ors that may | y decrease ce | ertainty of e | vidence | pre-
proba
of4 | bility | pre-
proba
of1. | bility | pre-
proba
of13 | bility | Test accuracy CoE | | e | patient
s) | design | Risk
of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | , | | False negative s (patient | | cy
study) | | | | | | 4 (3
to 6) | 4 (3
to
5) | 1 (1
to 2) | 1 (1
to
1) | 14
(10
to
19) | 14
(11
to
18) | | | incorrec
tly
classifie
d as not
having
CRC) | | | | | | | | 0 feworin OC-
senso | - | 0 feworin OC-
senso | • | 0 feworin OC-
senso | | | | True negative s (patient | 13
studies
34813
patient | ļ · | not
serio
us | serious ^a | serious ^b | not
serious | none | 709
(651
to
757) | 747
(661
to
814) | 732
(673
to
781) | 771
(682
to
841) | 639
(588
to
683) | 674
(596
to
734) | ⊕⊕○○
Low | | s
without
CRC) | S | type
accura | | | | | | 38
fev
TN in
senso | OC- | 39 fev
TN in
senso | OC- | 35 fev
TN in
senso | OC- | | | | | | | | | | | Eff | ect pe | r 1,000 | patier | nts test | ed | | |--|----------------------------|--------------|--------------------|------------------|-------------------|-----------------|----------------------|--|------------------------|--|------------------------|--|------------------------|-------------------| | Outcom | Nº of
studies
(Nº of | Study | Fact | ors that may | y decrease ce | ertainty of e | vidence | • | test
bility
.2% | pre-
proba
of1. | bility | pre-
proba
of13 | bility | Test accuracy CoE | | e | patient
s) | design | Risk
of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | OC-
sens
or | HM
JAC
K-
arc | · | | False positive s (patient s incorrec | | cy
study) | | | | | | 249
(201
to
307)
38 mc
in OC- | | 257
(208
to
316)
39 mo
in OC- | | 225
(181
to
276)
35 mo
in OC- | | | | tly
classifie
d as
having
CRC) | | | | | | | | senso | | senso | | senso | | | - a. Results based on indirect comparisons from different studies - b. There was high amount of heterogeneity detected. Footnote: CoE = certainty of evidence # References 1. Chapman, C, Thomas, C, Morling, J, Tangri, A, Oliver, S, Simpson, J A, Humes, D J, Banerjea, A. Early clinical outcomes of a rapid colorectal cancer diagnosis pathway using faecal immunochemical testing in Nottingham. Colorectal Disease; 2020. - 2.D'Souza, N, Delisle, T G, Chen, M, Benton, S C, Abulafi, M, Committee, Nice Fit Steering. Faecal immunochemical testing in symptomatic patients to prioritize investigation: diagnostic accuracy from NICE FIT Study. British Journal of Surgery; 2021. - 3.D'Souza, N, Hicks, G, Benton, S C, Abulafi, M. The diagnostic accuracy of the faecal immunochemical test for colorectal cancer in risk-stratified symptomatic patients. Annals of the Royal College of Surgeons of England; 2020. - 4.Farrugia, A, Widlak, M, Evans, C, Smith, S C, Arasaradnam, R. Faecal immunochemical testing (FIT) in symptomatic patients: What are we missing?. Frontline Gastroenterology; 2020. - 5.Godber, I M, Todd, L M, Fraser, C G, MacDonald, L R, Younes, H B. Use of a faecal immunochemical test for haemoglobin can aid in the investigation of patients with lower abdominal symptoms. Clinical Chemistry and Laboratory Medicine; 2016. - 6.Herrero, J M, Vega, P, Salve, M, Bujanda, L, Cubiella, J. Symptom or faecal immunochemical test based referral criteria for colorectal cancer detection in symptomatic patients: A diagnostic tests study. BMC Gastroenterology; 2018. - 7.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. - 8.Laszlo, Helga E, Seward, Edward, Ayling, Ruth, Lake, Jenny, Malhi, Aman, Hackshaw, Allan, Stephens, Clare, Pritchard-Jones, Kathy, Chung, Donna, Machesney, Michael. Quantitative faecal immunochemical test for patients with high risk bowel symptoms: a prospective cohort study. medRxiv; 2020. - 9.McSorley, S, Witherspoon, P, Rigg, D, Burton, P, Winter, J. A colorectal referral pathway incorporating primary care faecal haemoglobin testing safely and effectively prioritises investigation. Gut; 2021. - 10. Mowat, C., Digby, J., Strachan, J. A., Wilson, R., Carey, F. A., Fraser, C. G., Steele, R. J.. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut; Sep 2016. - 11.Rodriguez-Alonso, L, Rodriguez-Moranta, F, Ruiz-Cerulla, A, Lobaton, T, Arajol, C, Binefa, G, Moreno, V, Guardiola, J. An urgent referral strategy for symptomatic patients with suspected colorectal cancer based on a quantitative immunochemical faecal occult blood test. Digestive and Liver Disease; 2015. - 12. Turvill, J L, Turnock, D, Cottingham, D, Haritakis, M, Jeffery, L, Girdwood, A, Hearfield, T, Mitchell, A, Keding, A. The Fast Track FIT study: Diagnostic accuracy of faecal immunochemical test for haemoglobin in patients with suspected colorectal cancer. British Journal of General Practice; 2021. - 13. Morales Arraez, D E, Hernandez, G, Carrillo, M, Adrian, Z, Gimeno, A Z, Quintero, E. Role of faecal immunochemical testing in the diagnostic workup of patients with iron deficiency anaemia. United European Gastroenterology Journal; 2018. Table 5: Should FOB Gold vs. QuikRead go be used to diagnose CRC in in patients with all symptoms (NG12, DG30 or NC)? | FOB Gold | | QuikRead g | go | |-------------|-----------------------------|-------------|-----------------------------| | Sensitivity | 0.94 (95% CI: 0.81 to 0.99) | Sensitivity | 0.92 (95% CI: 0.64 to 0.99) | | Specificity | 0.75 (95% CI: 0.71 to 0.78) | Specificity | 0.77 (95% CI: 0.71 to 0.82) | | Prevalences 5.1% 5% 5.3% | |--------------------------| |--------------------------| | | | | | | | | Effect per 1,000 patients tested | | | | | ed | | | |-------------------------------|---|------------------------------------|---|----------------------|----------------------|-----------------|----------------------------------|-----------------------------------|-------------------|---------------------------------|-------------------|-----------------------------------|-------------------|--------------------------| | Outcom
e | Nº of
studies
(Nº of
patient
s) | Study | Factors that may decrease certainty of evidence | | | | | pre-test
probability
of5.1% | | pre-test
probability
of5% | | pre-test
probability
of5.3% | | Test
accuracy | | | | design | Risk of
bias | Indirectne
ss | Inconsisten
cy | Imprecisi
on | Publicati
on bias | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | CoE | | True positives (patients with | | cross-
section
al
(cohort | seriou
s ^a | serious ^b | serious ^c | not
serious | none | 48
(41
to
50) | 47 (33
to 50) | 47
(41
to
50) | 46 (32
to 50) | 50
(43
to
52) | 49 (34
to 52) | ⊕○○
○
Very
low¹ | | CRC) | S | type
accurac
y | | | | | | | ore TP in
Gold | | ore TP in
Gold | | ore TP in
Gold | | | False
negative
s | | study) | | | | | | 3 (1
to
10) | 4 (1 to
18) | 3 (0
to
9) | 4 (0 to
18) | 3 (1
to
10) | 4 (1 to
19) | | | | | | | | | | | | Effect p | er 1,0 | 00 patient | ts test | ed | | |--|-------------------------------------|---|--------------------------|----------------------|----------------------|-----------------|----------------------|--------------------------------|-----------------------------------|----------------------------|-----------------------------|-----------------------------------|------------------------|----------------------| | Outcom | Nº of
studies
(Nº of | Study
design | Fact | ors that ma | y decrease ce | rtainty of ev | tainty of evidence | | pre-test
probability
of5.1% | | re-test
bability
of5% | pre-test
probability
of5.3% | | Test
accuracy | | e | patient
s) | | Risk of
bias | Indirectne
ss | Inconsisten
cy | Imprecisi
on | Publicati
on bias | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | CoE | | (patients incorrect ly classified as not having CRC) | | | | | | | | 1 fev
FOB | ver FN in
Gold | _ | wer FN in
Gold | 1 fev
FOB | ver FN in
Gold | | | True negative s (patients without CRC) | 1
studies
727
patient
s | cross-
section
al
(cohort
type
accurac | seriou
s ^a | serious ^b | serious ^c | serious | none | 712
(67
4 to
740
) | , | 712
(67
5 to
741 | , | 710
(67
2 to
739
) | 729
(672 to
777) | ⊕⊖⊖
⊝
Very low | | chej | | y
study) | | | | | | 19 fewer TN in FOB Gold | | 19 fewer TN
in FOB Gold | | 19 fewer TN in FOB Gold | | | | False
positives
(patients | | | | | | | | 237
(20
9 to | 218
(171 to
275) | 238
(20
9 to | 219
(171 to
275) | 237
(20
8 to | 218
(170 to
275) | | | | Nº of
studies
(Nº of
patient
s) | | | | | | | | Effect p | er 1,0 | 00 patient | s test | ed | | |------------------------------------|---|-----------------|-----------------|---|-------------------|-----------------|----------------------|---------------------|-----------------------------------|---------------------|---------------------------------|---------------------|------------------------------|------------------| | Outcom
e | | Study
design | Fact | Factors that may decrease certainty of evidence | | | | | pre-test
probability
of5.1% | | pre-test
probability
of5% | | re-test
bability
f5.3% | Test
accuracy | | | | | Risk of
bias | Indirectne
ss | Inconsisten
cy | Imprecisi
on | Publicati
on bias | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | FO
B
Gol
d | QuikRe
ad go | CoE | | incorrect
ly | | | | | | | | 275
) | | 275
) | | 275
) | | | | classified
as
having
CRC) | | | | 13 F | | | | | | 19 m
FOB | ore FP in
Gold | 19 m
FOB | ore
FP in
Gold | | - a. Tsapournas 2020 was judged at a high risk of bias in patient selection. - b. Results based on indirect comparisons from different studies - c. There was high amount of heterogeneity detected. Footnote: CoE = certainty of evidence # References 1. Navarro, M, Hijos, G, Sostres, C, Lue, A, Puente-Lanzarote, J J, Carrera-Lasfuentes, P, Lanas, A. Reducing the Cut-Off Value of the Fecal Immunochemical Test for Symptomatic Patients Does Not Improve Diagnostic Performance. Frontiers in Medicine; 2020. Table 6: Should CT colonography be preferred over colonoscopy for patients with non-specific symptoms including abdominal pain or weight loss? Patient or population: patients with non-specific symptoms including abdominal pain or weight loss Setting: 2WW CRC pathway Intervention: Is CT colonography preferred Comparison: colonoscopy | Outcomes | Impact | № of
participants
(studies) | Certainty
of the
evidence
(GRADE) | |-----------------------------------|---|---------------------------------------|--| | Patients' preference (Preference) | For patients recommended whole colon investigation as part of a 2WW CRC pathway, CTC is equivalent to colonoscopy for detection of CRC; and use of CTC can be determined by local teams according to audited performance, capacity and experience | 9822
(1
observational
study) | ⊕⊕⊖⊖
Low ^{1,2,a} | ^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). #### CI: confidence interval # **GRADE Working Group grades of evidence** High certainty: we are very confident that the true effect lies close to that of the estimate of the effect. **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect. a. Study was judged to be at a high risk of bias. #### References - 1.D'Souza N, Delisle TG, Chen M, Benton S, Abulafi M, NICE FIT Steering Committee. Faecal immunochemical test is superior to symptoms in predicting pathology in patients with suspected colorectal cancer symptoms referred on a 2WW pathway; a diagnostic accuracy study. Gut; 2020. - 2.Delisle, T G, D'Souza, N, Davies, B, Ward, H, Abulafi, M. Patient acceptability of a home colorectal cancer rule out test. British Journal of Surgery; 2020. Table 7: Should FIT be used to diagnose CRC in younger patients (<50)? | Sensitivity | | | 0.81 to 0 | .93 | | Droval | onsos 2 70/ | 1 50/ 2 00/ | | | | | |---|-----------------------------------|---|--------------|----------------------|-------------------|----------------------------|----------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------|--| | Specificity | | | 0.83 to 0 | .88 | | Prevalences 2.7% 1.5% 3.9% | | | | | | | | | Nº of | | Fa | actors that ma | ay decrease ce | tainty of evic | lence | Effect per | | | | | | Outcome | studies
(№ of
patients
) | patients design | | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of2.7% | pre-test
probabilit
y of1.5% | pre-test
probabilit
y of3.9% | Test
accuracy
CoE | | | True
positives
(patients
with CRC) | 2
studies
9969
patients | cross-
sectiona
I (cohort
type | serious
a | serious ^b | not serious | not serious | none | 22 to 25 | 12 to 14 | 32 to 36 | ⊕⊕⊖
⊝
Low ^{1,2} | | | False
negatives
(patients
incorrectl | | accuracy
study) | | | | | | 2 to 5 | 1 to 3 | 3 to 7 | | | | | Nº of | | Fa | actors that ma | ay decrease cer | tainty of evic | dence | Effect per | 1,000 patie | nts tested | _ | |--|-----------------------------------|---|-----------------|----------------------|-------------------|-----------------|----------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------| | Outcome | studies
(№ of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of2.7% | pre-test
probabilit
y of1.5% | pre-test
probabilit
y of3.9% | Test
accuracy
CoE | | y
classified
as not
having
CRC) | | | | | | | | | | | | | True
negatives
(patients
without
CRC) | studies
9969
patients | cross-
sectiona
I (cohort
type
accuracy | serious
a | serious ^b | not serious | not serious | none | 808 to
856 | 818 to
867 | 798 to
846 | ⊕⊕⊖
⊝
Low | | False positives (patients incorrectl y classified as having CRC) | | study) | | | | | | 117 to
165 | 118 to
167 | 115 to
163 | | - a. High risk of bias in patient selection - b. Results based on indirect comparisons from different studies **Footnote:** CoE = certainty of evidence ## References 1.Lue, A, Hijos, G, Sostres, C, Perales, A, Navarro, M, Barra, M V, Mascialino, B, Andalucia, C, Puente, J J, Lanas, A, Gomollon, F. The combination of quantitative faecal occult blood test and faecal calprotectin is a cost-effective strategy to avoid colonoscopies in symptomatic patients without relevant pathology. Therapeutic Advances in Gastroenterology; 2020. 2.D'Souza, N, Monahan, K, Benton, S C, Wilde, L, Abulafi, M, Group, Nice Fit Steering. Finding the needle in the haystack: the diagnostic accuracy of the faecal immunochemical test for colorectal cancer in younger symptomatic patients. Colorectal Disease; 2021. Table 8: FIT compared to no test or no-return for risk of CRC Patient or population: risk of CRC **Setting:** Various **Intervention:** FIT Comparison: no test or no-return | Outcomes | Impact | № of
participants
(studies) | Certainty
of the
evidence
(GRADE) | |---|---|-----------------------------------|--| | Adherence (Adherence)
assessed with: Questionnaire/survey | We recommend that GPs should be advised that in a symptomatic patient with no recent FIT result (through lack of return of the kit or sample failure) evaluation of CRC risk is likely to be suboptimal. This is likely to be of an order greater than failing to consider well known "alarm" symptoms such as rectal bleeding or change in bowel habit. We recommend that patients who refuse to return a FIT test should be counselled that the absence of a result may impair their responsible clinician's ability to correctly assess their risk of CRC and take appropriate action to address this. | (0 studies) | - | Table 8: FIT compared to no test or no-return for risk of CRC Patient or population: risk of CRC **Setting:** Various **Intervention:** FIT Comparison: no test or no-return | | | | Certainty | |----------|--------|--------------|-----------| | | | Nº of | of the | | | | participants | evidence | | Outcomes | Impact | (studies) | (GRADE) | ^{*}The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: confidence interval ### **GRADE** Working Group grades of evidence High certainty: we are very confident that the true effect lies close to that of the estimate of the effect. **Moderate certainty:** we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. **Low certainty:** our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. **Very low certainty:** we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect. Table 9: Should FIT (HM-JACKarc) be used to diagnose CRC in similar in both high (NG12) and low risk (DG30) symptomatic patients (in any setting at the >10 cut-off, Tier 1)? | FIT (HM-JA | CKarc) DG30 | FIT (HM-JACKarc) NG12 | | | | | | |-------------|-----------------------------|-----------------------|-----------------------------|--|--|--|--| | Sensitivity | 0.88 (95% CI: 0.78 to 0.95) | Sensitivity | 0.89 (95% CI: 0.82 to 0.93) | | | | | | Specificity | 0.88 (95% CI: 0.87 to 0.89) | Specificity | 0.81 (95% CI: 0.79 to 0.82) | | | | | |
Duavalanasa | 4 (0/ | 2 20/ | C0/ | |-------------|-------|-------|-----| | Prevalences | 4.0% | 3.5% | 0% | | | Nº of
studie
s (Nº
of
patien
ts) | | | | | | | Effect per 1,000 patients tested | | | | | | | |---------------------------------|---|-----------------------------------|----------------------------------|----------------------|--------------------------------|-----------------|----------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|-------------| | Outcom | | Study | Factors | that may d | decrease certainty of evidence | | | pre-test
probability
of4.6% | | pre-test
probability
of3.3% | | pre-test
probability
of6% | | Test | | e | | design | Risk of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | y CoE | | True positive | 4
studie | cross-
sectio | serious ^{1,2,}
3,4,a | serious ^b | serious ^c | not
serious | none | 40 (36
to 44) | 41 (38
to 43) | 29 (26
to 31) | 29 (27
to 31) | 53 (47
to 57) | 53 (49
to 56) | ФОО | | s (patient s with CRC) | s
11464
patien
ts | nal
(cohor
t type
accura | or
e | | | | | 1 fewer TP in
FIT (HM-
JACKarc) DG30 | | 0 fewer TP in
FIT (HM-
JACKarc) DG30 | | 0 fewer TP in
FIT (HM-
JACKarc) DG30 | | Very
low | | False
negativ | = | cy
study) | | | | | | 6 (2 to
10) | 5 (3 to
8) | 4 (2 to
7) | 4 (2 to
6) | 7 (3 to
13) | 7 (4 to
11) | | | es
(patient
s
incorrec | | | | | | | | 1 more
FIT (HM
JACKar | | 0 fewer
FIT (HM
JACKar | | 0 fewer
FIT (HM
JACKar | | | | | | | | | | | | | Effect p | er 1,000 |) patient: | s tested | | | |--|---------------------------|-----------------------------------|----------------------|----------------------|----------------------|-----------------|----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------| | Outcom | Nº of
studie
s (Nº | Study | Factors | that may d | ecrease cert | ainty of ev | idence | pre-test
probability
of4.6% | | proba | -test
ability
.3% | pre-test
probability
of6% | | Test | | е | of
patien
ts) | design | Risk of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | y CoE | | tly
classifie
d as not
having
CRC) | | | | | | | | | | | | | | | | True negativ es (patient | 4
studie
s
11464 | cross-
sectio
nal
(cohor | serious ^a | serious ^b | serious ^c | not
serious | none | 840
(830
to
849) | 773
(754
to
782) | 851
(841
to
861) | 783
(764
to
793) | 827
(818
to
837) | 761
(743
to
771) | ⊕○○
○
Very
low | | s
without
CRC) | patien
ts | t type
accura
cy
study) | | | | | | 67 mor
FIT (HM
JACKar | _ | 68 mor
FIT (HIV
JACKard | _ | 66 mor
FIT (HM
JACKar | _ | | | False positive s | | ,, | | | | | | 114
(105
to | 181
(172
to | 116
(106
to | 184
(174
to | 113
(103
to | 179
(169
to | | | (patient | | | | | | | | 124) | 200) | 126) | 203) | 122) | 197) | | | | | | | | | | | | Effect p | per 1,000 |) patient | s tested | | | |---|--------------------------|--------|-----------------|------------------|-------------------|--|----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------| | Outcom | Nº of
studie
s (Nº | Study | Factors | that may d | ecrease cert | pre-test probability of4.6% probability of3.3% | | | pre-test
probability
of6% | | Test | | | | | е | of
patien
ts) | design | Risk of
bias | Indirectn
ess | Inconsiste
ncy | Imprecisi
on | Publicati
on bias | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | FIT
(HM-
JACKa
rc)
DG30 | FIT
(HM-
JACKa
rc)
NG12 | y CoE | | s incorrec tly classifie d as having CRC) | | | | | | | | FIT (HN | er FP in
1-
c) DG30 | 68 fewo | | 66 fewo | | | - a. Farrugia 2020 was judged to be at a high risk of bias for flow and timing; D'Souza 2020 was judged to be at a high risk of bias for patient selection. - b. Results based on indirect comparisons from different studies; direct evidence about impact on patient-important outcomes missing. - c. Significant heterogeneity for sensitivity detected. Footnote: CoE = certainty of evidence ## References 1.D'Souza, N., Georgiou Delisle, T., Chen, M., Benton, S., Abulafi, M.. Faecal immunochemical test is superior to symptoms in predicting pathology in patients with suspected colorectal cancer symptoms referred on a 2WW pathway: A diagnostic accuracy study. Gut; 2021. 2.Chapman, C. J., Banerjea, A., Humes, D. J., Allen, J., Oliver, S., Ford, A., Hardy, K., Djedovic, N., Logan, R. F., Morling, J. R.. Choice of faecal immunochemical test matters: comparison of OC-Sensor and HM-JACKarc, in the assessment of patients at high risk of colorectal cancer. Clin Chem Lab Med; Oct 29 2020. 3.D'Souza N, Delisle TG,Chen M,Benton S,Abulafi M,NICE FIT Steering Committee. Faecal immunochemical test is superior to symptoms in predicting pathology in patients with suspected colorectal cancer symptoms referred on a 2WW pathway; a diagnostic accuracy study. Gut; 2020. 4.Farrugia, A, Widlak, M, Evans, C, Smith, S C, Arasaradnam, R. Faecal immunochemical testing (FIT) in symptomatic patients: What are we missing?. Frontline Gastroenterology; 2020. Table 10: Should FIT (OC-sensor) be used to diagnose CRC in in patients with rectal bleeding (in primary care at >10 cut-off)? | Sensitivity | 0.96 (95% | S CI: 0.80 to 0.99 |) | | Prevale | nces 5.6% | | | | |---|------------------------------|-------------------------------------|------------------------|----------------------|-----------------|----------------------|------------------|---|------------------| | Specificity | 0.38 (95% | 6 CI: 0.33 to 0.43 |) | | rievalei | J.076 | | | | | Outcome | Nº of
studies (Nº | Study design | Fa | actors that ma | ay decrease cer | tainty of evid | ence | Effect per
1,000
patients
tested | Test
accuracy | | | of patients) | | Risk of
bias | Indirectness | Inconsistency | Imprecision | Publication bias | pre-test
probability
of5.6% | CoE | | True positives
(patients with
CRC) | 1 studies
462
patients | cross-
sectional
(cohort type | serious ^{1,a} | serious ^b | not serious | serious ^c | none | 54 (45 to 55) | ⊕○○○
Very low | | False negatives
(patients
incorrectly
classified as not
having CRC) | | accuracy
study) | | | | | | 2 (1 to 11) | | | Outcome | Nº of
studies (Nº | Study design | Fa | actors that ma | y decrease cert | tainty of evide | ence | Effect per
1,000
patients
tested | Test
accuracy | |---|------------------------------|-------------------------------------|----------------------|----------------------|-----------------|----------------------|---------------------|---|------------------| | | of patients) | | Risk of
bias | Indirectness | Inconsistency | Imprecision | Publication
bias | pre-test
probability
of5.6% | CoE | | True negatives
(patients
without CRC) | 1 studies
462
patients | cross-
sectional
(cohort type | serious ^a | serious ^b | not serious | serious ^c | none | 359 (312 to
406) | ⊕○○○
Very low | | False positives (patients incorrectly classified as having CRC) | | accuracy
study) | | | | | | 585 (538 to
632) | | - a. Mowat/Digby was judged to be at a high risk of bias for flow and timing; and a high risk of bias for patient selection. - b. direct evidence about impact on patient-important outcomes is missing. - c. Wide confidence intervals Footnote: CoE = certainty of evidence ## References 1.Mowat, C., Digby, J., Strachan, J. A., Wilson, R., Carey, F. A., Fraser, C. G., Steele, R. J.. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut; Sep 2016. Table 11: Should FIT (HM-JACKarc) be used to diagnose CRC in iron deficiency anaemia? | | studies | Ctudy | | |-------------|---------|-----------|-------------------------------------| | | Nº of | | Factors that may decrease certainty | | Specificity | | 0.81 (95% | CI: 0.77 to 0.85) | | Sensitivity | | 1.00 (95% | CI: 0.89 to 1.00) | Prevalences 3.3% | | Nº of | | Fa | ctors that ma | y decrease cer | tainty of evid | ence | Effect per | 1,000 patie | nts tested | |
--|-----------------------------------|---|-----------------------|----------------------|-------------------|----------------------|----------------------|------------------------------------|----------------------------------|----------------------------------|-------------------------| | Outcome | studies
(№ of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of3.3% | pre-test
probabilit
y of0% | pre-test
probabilit
y of0% | Test
accuracy
CoE | | True positives (patients with CRC) | 1
studies
479
patients | cross-
sectiona
I (cohort
type | serious ^{1,} | serious ^b | not serious | serious ^c | none | 33 (29 to
33) | 0 (0 to 0) | 0 (0 to 0) | ⊕⊖⊖
⊝
Very low | | False negatives (patients incorrectl y classified as not having CRC) | | accurac
y study) | | | | | | 0 (0 to 4) | 0 (0 to 0) | 0 (0 to 0) | | | True
negatives
(patients
without
CRC) | 1
studies
479
patients | cross-
sectiona
I (cohort
type | serious ^a | serious ^b | not serious | serious ^c | none | 783 (745
to 822) | 810 (770
to 850) | 810 (770
to 850) | ⊕⊖⊖
⊝
Very low | | | Nº of | | Fa | ctors that ma | y decrease cer | tainty of evid | ence | Effect per | 1,000 patie | nts tested | | |------------|------------------------------------|-----------------|-----------------|------------------|-------------------|-----------------|----------------------|------------------------------------|----------------------------------|----------------------------------|-------------------------| | Outcome | studies
(Nº of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of3.3% | pre-test
probabilit
y of0% | pre-test
probabilit
y of0% | Test
accuracy
CoE | | False | | accurac | | | | | | 184 (145 | 190 (150 | 190 (150 | | | positives | | y study) | | | | | | to 222) | to 230) | to 230) | | | (patients | | | | | | | | | | | | | incorrectl | | | | | | | | | | | | | У | | | | | | | | | | | | | classified | | | | | | | | | | | | | as having | | | | | | | | | | | | | CRC) | | | | | | | | | | | | - a. D'Souza 2021 was judged to be at a high risk of bias for patient selection. - b. direct evidence about impact on patient-important outcomes is missing - c. Wide confidence intervals for sensitivity and specificity Footnote: CoE = certainty of evidence ## References 1.D'Souza, N, Delisle, T G, Chen, M, Benton, S C, Abulafi, M, Committee, Nice Fit Steering. Faecal immunochemical testing in symptomatic patients to prioritize investigation: diagnostic accuracy from NICE FIT Study. British Journal of Surgery; 2021. Table 12: Should FIT (OC-sensor) be used to diagnose CRC in in those with isolated change in bowel habits? | Sensitivity | 0.88 (95% CI: 0.79 to 0.95) | |-------------|-----------------------------| | Specificity | 0.80 (95% CI: 0.79 to 0.81) | Prevalences 1.2% | Outcome | Nº of
studies (Nº | Study design | ı | Factors that m | nay decrease ce | rtainty of evi | dence | Effect per
1,000
patients
tested | Test
accuracy | |---|-----------------------------|-------------------------------------|------------------------|----------------------|-----------------|----------------------|--|---|------------------| | | of patients) | | Risk of
bias | Indirectness | Inconsistency | Imprecision | Publication
bias | pre-test
probability
of1.2% | СоЕ | | True positives
(patients with
CRC) | 1 study
5818
patients | cross-
sectional
(cohort type | serious ^{1,a} | serious ^b | not serious | serious ^c | publication
bias strongly
suspected ^d | 11 (9 to 11) | ⊕○○○
Very low | | False negatives
(patients
incorrectly
classified as not
having CRC) | | accuracy
study) | | | | | | 1 (1 to 3) | | | True negatives
(patients
without CRC) | 1 study
5818
patients | cross-
sectional
(cohort type | serious ^a | serious ^b | not serious | serious ^c | publication
bias strongly
suspected ^d | 790 (781 to
800) | ⊕○○○
Very low | | False positives
(patients
incorrectly
classified as
having CRC) | | accuracy
study) | | | | | | 198 (188 to
207) | | - a. Khasawneh 2020 was judged to be at an unclear risk of bias. - b. direct evidence about impact on patient-important outcomes is missing. - c. Wide confidence intervals for sensitivity d. Results based on a single study **Footnote:** CoE = certainty of evidence ## References 1.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. Table 13: Should FIT (OC-sensor) be used to diagnose CRC in in patients with CIBH or RB at thresholds >4 to >10 in primary care? | Sensitivity | | | 0.91 to (| 0.91 to 0.96 | | | alences 0% | 1.2% 5.6% | | | | |---|-----------------------------------|---|-----------------|----------------------|----------------------|-----------------|----------------------|----------------------------------|------------------------------------|------------------------------------|--| | Specificity | | | 0.38 to (| 0.69 | | Prev | alefices 0% | 1.2% 5.0% | | | | | | Nº of | | Fá | actors that ma | ay decrease cer | tainty of evid | dence | Effect per | 1,000 patie | nts tested | | | Outcome | studies
(№ of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of0% | pre-test
probabilit
y of1.2% | pre-test
probabilit
y of5.6% | Test
accuracy
CoE | | True
positives
(patients
with CRC) | studies
6280
patients | cross-
sectiona
I (cohort
type | serious
a | serious ^b | serious ^c | not serious | none | 0 to 0 | 11 to 12 | 51 to 54 | ⊕⊖⊖
⊖
Very
low ^{1,2} | | False
negatives
(patients
incorrectl | | accurac
y study) | | | | | | 0 to 0 | 0 to 1 | 2 to 5 | | | | Nº of | | Fa | actors that ma | ay decrease cer | tainty of evic | lence | Effect per | 1,000 patie | nts tested | _ | |--|-----------------------------------|-----------------|-----------------|----------------------|----------------------|-----------------|----------------------|----------------------------------|------------------------------------|------------------------------------|-------------------------| | Outcome | studies
(№ of
patients
) | Study
design | Risk of
bias | Indirectnes
s | Inconsistenc
y | Imprecisio
n | Publicatio
n bias | pre-test
probabilit
y of0% | pre-test
probabilit
y of1.2% | pre-test
probabilit
y of5.6% | Test
accuracy
CoE | | y
classified
as not
having
CRC) | | | | | | | | | | | | | True
negatives
(patients
without
CRC) | studies
6280
patients | accurac | serious
a | serious ^b | serious ^c | not serious | none | 380 to
690 | 375 to
682 | 359 to
651 | ⊕○○
○
Very low | | False positives (patients incorrectl y classified as having CRC) | | y study) | | | | | | 310 to
620 | 306 to
613 | 293 to
585 | | - a. Khasawneh 2020 was judged to be at an unclear risk of bias in all domains. - b. Results based on indirect comparisons from different studies; direct evidence about impact on patient-important outcomes is missing - c. Significant heterogeneity detected for both sensitivity and specificity Footnote: CoE = certainty of evidence ### References - 1.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. - 2.Digby, J, Strachan, J A, McCann, R, Steele, R J C, Fraser, C G, Mowat, C. Measurement of faecal haemoglobin with a faecal immunochemical test can assist in defining which patients attending primary care with rectal bleeding require urgent referral. Annals of Clinical Biochemistry; 2020. Table 14: Should FIT in primary care vs. FIT in secondary care be used to diagnose CRC in adults with lower gastrointestinal signs or symptoms (at >10) and in all symptoms (NG12, DG30 and NC)? | FIT in prima | ary care | FIT in seco | ndary care | |--------------|--------------------------------|-------------|--------------------------------| | Sensitivity | 0.91 (95% CI: 0.85
to 0.94) | Sensitivity | 0.91 (95% CI: 0.88
to 0.93) | | Specificity | 0.71 (95% CI: 0.57
to 0.82) | Specificity | 0.79 (95% CI: 0.74
to 0.83) | | Prevalences | 5.2% | 1.2% | 13.6% | |-------------|------|------|-------| | | | | | | | | | | | | | | | Effect p | er 1,00 | 0 patient | s tested | ł | | |---|---------------------------------|----------------------------------|--------------------------|----------------------|------------------------|----------------------|---------------------------|---|-----------------------------------|---|-----------------------------------|---|-----------------------------|--| |
Outco | Nº of
studie
s (Nº
of | Study | Fá | actors that | may decrea
evidence | | ty of | prob | pre-test
probability
of5.2% | | pre-test
probability
of1.2% | | e-test
pability
13.6% | Test accuracy | | me | patien ts) b True 13 cross- se | Risk
of
bias | Indirect
ness | Inconsist
ency | Imprecis
ion | Publicat
ion bias | FIT in prim ary care | FIT in
second
ary
care | FIT in prim ary care | FIT in
second
ary
care | FIT in prim ary care | FIT in
second
ary
care | СоЕ | | | True positiv es (patien | studie
s
34357 | sectio
nal
(cohor | serio
us ^a | serious ^b | serious ^c | not
serious | strong
associat
ion | 47
(44
to
49) | 47 (46
to 48) | 11
(10
to
11) | 11 (11
to 11) | 124
(116
to
128) | 124
(120 to
126) | ⊕⊕⊖⊖
Low ^{1,2,3,4,5,6,7,8,9,10}
,11,12,13 | | ts with
CRC) | patien
ts | t type
accura
cy
study) | | | | | | 0 fewer TP in
FIT in primary
care | | 0 fewer TP in
FIT in primary
care | | 0 fewer TP in
FIT in primary
care | | | | False
negativ
es | | | | | | | | 5 (3
to 8) | 5 (4 to
6) | 1 (1
to 2) | 1 (1 to
1) | 12 (8
to
20) | 12 (10
to 16) | | | (patien
ts
incorre
ctly
classifie | | | | | | | | | er FN in
primary | | er FN in
primary | | er FN in
primary | | | d as
not
having
CRC) | Effect p | er 1,00 | 0 patient | s testec | I | | |--|--------------------------|-----------------------------------|--------------------------|---|----------------------|-------------------|-------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------|---------------| | Outco | Nº of
studie
s (Nº | Study | Fá | Factors that may decrease certainty of evidence | | | | | pre-test
probability
of5.2% | | pre-test
probability
of1.2% | | e-test
pability
.3.6% | Test accuracy | | me | patien
ts) | Risk
of
bias | Indirect
ness | Inconsist
ency | Imprecis
ion | Publicat ion bias | FIT in
prim
ary
care | FIT in
second
ary
care | FIT in
prim
ary
care | FIT in
second
ary
care | FIT in
prim
ary
care | FIT in
second
ary
care | СоЕ | | | True
negativ
es
(patien | s
34357 | cross-
sectio
nal
(cohor | serio
us ^a | serious ^b | serious ^c | not
serious | strong
associat
ion | 673
(540
to
777) | 749
(702 to
787) | 701
(563
to
810) | 781
(731 to
820) | 613
(492
to
708) | 683
(639 to
717) | ⊕⊕○○
Low | | ts
without
CRC) | patien
ts | t type
accura
cy
study) | | | | | | 76 fewer TN in FIT in primary care | | 80 fewer TN in FIT in primary care | | 70 fewer TN in FIT in primary care | | | | False
positiv
es
(patien | | | | | | | | 275
(171
to
408) | 199
(161 to
246) | 287
(178
to
425) | 207
(168 to
257) | 251
(156
to
372) | 181
(147 to
225) | | | ts
incorre
ctly
classifie
d as | | | | | | | | | re FP in
primary | | re FP in
primary | | re FP in
primary | | | having
CRC) | | | | | | | | | | | | | | | - a. Studies were judged at a high risk of bias in patient selection e.g., McSorley 2020, Mowat 2016. - b. Results based on indirect comparisons from different studies; direct evidence about impact on patient-important outcomes is missing - c. Significant heterogeneity detected for specificity **Footnote:** CoE = certainty of evidence #### References - 1.Chapman, C, Thomas, C, Morling, J, Tangri, A, Oliver, S, Simpson, J A, Humes, D J, Banerjea, A. Early clinical outcomes of a rapid colorectal cancer diagnosis pathway using faecal immunochemical testing in Nottingham. Colorectal Disease; 2020. - 2.D'Souza, N, Delisle, T G, Chen, M, Benton, S C, Abulafi, M, Committee, Nice Fit Steering. Faecal immunochemical testing in symptomatic patients to prioritize investigation: diagnostic accuracy from NICE FIT Study. British Journal of Surgery; 2021. - 3.D'Souza, N, Hicks, G, Benton, S C, Abulafi, M. The diagnostic accuracy of the faecal immunochemical test for colorectal cancer in risk-stratified symptomatic patients. Annals of the Royal College of Surgeons of England; 2020. - 4.Farrugia, A, Widlak, M, Evans, C, Smith, S C, Arasaradnam, R. Faecal immunochemical testing (FIT) in symptomatic patients: What are we missing?. Frontline Gastroenterology; 2020. - 5.Godber, I M, Todd, L M, Fraser, C G, MacDonald, L R, Younes, H B. Use of a faecal immunochemical test for haemoglobin can aid in the investigation of patients with lower abdominal symptoms. Clinical Chemistry and Laboratory Medicine; 2016. - 6.Herrero, J M, Vega, P, Salve, M, Bujanda, L, Cubiella, J. Symptom or faecal immunochemical test based referral criteria for colorectal cancer detection in symptomatic patients: A diagnostic tests study. BMC Gastroenterology; 2018. - 7.Khasawneh, F, Osborne, T, Stephenson, J, Barnes, D, Seehra, J, Danaher, P, Jones, J, Singh, B. Faecal immunochemical testing is a cost-effective way to stratify symptomatic patients for urgent straight to test investigation. Colorectal Disease; 2020. - 8.McSorley, S, Witherspoon, P, Rigg, D, Burton, P, Winter, J. A colorectal referral pathway incorporating primary care faecal haemoglobin testing safely and effectively prioritises investigation. Gut; 2021. - 9.Mowat, C, Digby, J, Strachan, J A, Wilson, R, Carey, F A, Fraser, C G, Steele, R J C. Faecal haemoglobin and faecal calprotectin as indicators of bowel disease in patients presenting to primary care with bowel symptoms. Gut; 2016. - 10.Rodriguez-Alonso, L, Rodriguez-Moranta, F, Ruiz-Cerulla, A, Lobaton, T, Arajol, C, Binefa, G, Moreno, V, Guardiola, J. An urgent referral strategy for symptomatic patients with suspected colorectal cancer based on a quantitative immunochemical faecal occult blood test. Digestive and Liver Disease; 2015. - 11. Tsapournas, G, Hellstrom, P M, Cao, Y, Olsson, L I. Diagnostic accuracy of a quantitative faecal immunochemical test vs. symptoms suspected for colorectal cancer in patients referred for colonoscopy. Scandinavian Journal of Gastroenterology; 2020. 12. Turvill, J L, Turnock, D, Cottingham, D, Haritakis, M, Jeffery, L, Girdwood, A, Hearfield, T, Mitchell, A, Keding, A. The Fast Track FIT study: Diagnostic accuracy of faecal immunochemical test for haemoglobin in patients with suspected colorectal cancer. British Journal of General Practice; 2021. 13. Hicks, G, D'Souza, N, Georgiou Delisle, T, Chen, M, Benton, S C, Abulafi, M. Using the faecal immunochemical test in patients with rectal bleeding: evidence from the NICE FIT study. Colorectal Disease; 2021. Question: Should FIT be used to diagnose CRC in aspirin users? | Sensitivity | 0.88 (95% CI: 0.75 to 0.95) | | | |-------------|-----------------------------|------------|--------| | Sensitivity | 0.88 (93% Cl. 0.73 to 0.93) | Prevalence | 10 E0/ | | Cassificity | 0.66 (050/ Ch 0.62 to 0.71) | Prevalence | 10.5% | | Specificity | 0.66 (95% CI: 0.62 to 0.71) | | | | | Nº of
studies (Nº | Study design | | Factors that r | Effect per
1,000
patients
tested | Test
accuracy | | | | |---------------------------------------|----------------------------|-------------------------------------|--------------|----------------|---|----------------------|--|------------------------------------|------------------| | | of patients) | | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication
bias | pre-test
probability
of10.5% | CoE | | True positives (patients with CRC) | 1 study
485
patients | cross-
sectional
(cohort type | serious | not serious | not serious | serious ^b | publication
bias strongly
suspected ^c | 92 (79 to
100) | ⊕○○○
Very low | | False negatives (patients incorrectly | | accuracy
study) | | | | | | 13 (5 to 26) | | | Outcome | № of
studies (№ | es (№ Study design | | Factors that r | dence | Effect per
1,000
patients
tested | Test
accuracy | | | |---|----------------------------|-------------------------------------|--------------|----------------|---------------|---|--|------------------------------------|------------------| | | of patients) | | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication
bias | pre-test
probability
of10.5% | СоЕ | | classified as not having CRC) | | | | | | | | | | | True negatives
(patients
without CRC) | 1 study
485
patients | cross-
sectional
(cohort type | serious | not serious | not serious | serious ^b | publication
bias strongly
suspected ^c | 591 (555 to
635) | ⊕○○○
Very low | | False positives
(patients
incorrectly
classified as
having CRC) | | accuracy
study) | | | | | | 304 (260 to
340) | | - a. Poor representativeness of the population. - b. Wide confidence intervals; small sample <500 participants - c. Results based on a single study ### **References:** [1] Bujanda L, Sarasqueta C, Vega P, Salve M, Quintero E, Alvarez-Sanchez V, et al. Effect of aspirin on the diagnostic accuracy of the faecal immunochemical test for colorectal advanced neoplasia. *United European Gastroenterol J* 2018;6(1):123-130. Question: Should FIT be used to diagnose CRC in females in secondary care (threshold: ≥10 µg Hb/g)? | Sensitivity | 0.76 to 0.88 |
-------------|--------------| | Specificity | 0.82 to 0.85 | Prevalences 1.1% 4.5% | | Nº of studies | Study | F | actors that ma | ay decrease cer | tainty of evid | ence | Effect per 1, | Test | | |---|--------------------------------|--|----------------------|----------------------|-----------------|----------------|------------------|------------------------------------|------------------------------------|-----------------| | Outcome | (Nº of patients) | design | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication bias | pre-test
probability
of 1.1% | pre-test
probability
of 4.5% | accuracy
CoE | | True
positives
(patients
with CRC) | 2 studies
21435
patients | cross-
sectional
(cohort
type | serious ^a | serious ^b | not serious | not serious | none | 8 to 10 | 34 to 40 | ⊕⊕⊖⊖
Low | | False negatives (patients incorrectly classified as not having CRC) | | accuracy
study) | | | | | | 1 to 3 | 5 to 11 | | | True
negatives
(patients
without CRC) | 2 studies
21435
patients | cross-
sectional
(cohort
type | serious ^a | serious ^b | not serious | not serious | none | 811 to 841 | 783 to 812 | ⊕⊕⊖⊖
Low | | | Nº of | Study | F | actors that ma | ay decrease cer | Effect per 1, | Test | | | | | | |---|-----------------------------|--------------------|--------------|----------------|-----------------|---------------|------------------|------------------------------------|------------------------------------|-----------------|--|--| | Outcome | Outcome (Nº of designments) | design | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication bias | pre-test
probability
of 1.1% | pre-test
probability
of 4.5% | accuracy
CoE | | | | False positives (patients incorrectly classified as having CRC) | | accuracy
study) | | | | | | 148 to 178 | 143 to 172 | | | | - a. High risk of bias in patient selection and index test in Khan 2020. - b. Results based on indirect comparisons from different studies #### References - [1] Pin-Vieito N, Garcia Nimo L, Bujanda L, Roman Alonso B, Gutierrez-Stampa MA, Aguilar-Gama V, et al. Optimal diagnostic accuracy of quantitative faecal immunochemical test positivity thresholds for colorectal cancer detection in primary health care: A community-based cohort study. *United European Gastroenterology Journal* 2021;9(2):256-267. - [2] Khan AA, Klimovskij M, Harshen R. Accuracy of faecal immunochemical testing in patients with symptomatic colorectal cancer. *BJS Open* 2020;4(6):1180-1188. Question: Should FIT be used to diagnose CRC in males in secondary care (threshold: ≥10 μg Hb/g)? | Sensitivity | | 0.91 to 0.95 | | | Dravala | nces 2.3% 5 | 00/ | | | |---|--------------------------------|---|----------------------|----------------------|------------------------------------|-------------|------------------|--|-----------------| | Specificity | | 0.79 to 0.80 | | | Prevalei | ices 2.3% 5 | .9% | | | | Outcome | Nº of | Ctudy decise | F | actors that m | nay decrease certainty of evidence | | | Effect per
1,000 patients
tested | Test | | of patients) | studies (№ of patients) | Study design | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication bias | pre-test
probability
of2.3% | accuracy
CoE | | True positives (patients with CRC) | 2 studies
18168
patients | cross-sectional
(cohort type
accuracy
study) | serious ^a | serious ^b | not serious | not serious | none | 21 to 22 | ⊕⊕○○
Low | | False negatives (patients incorrectly classified as not having CRC) | | | | | | | | 1 to 2 | | | True negatives
(patients
without CRC) | 2 studies
18168
patients | cross-sectional
(cohort type
accuracy | serious | serious ^b | not serious | not serious | none | 772 to 782 | ⊕⊕○○
Low | | False positives (patients incorrectly classified as having CRC) | patients | study) | | | | | | 195 to 205 | | a. High risk of bias in patient selection and index test in Khan 2020. b. Results based on indirect comparisons from different studies. #### References [1] Pin-Vieito N, Garcia Nimo L, Bujanda L, Roman Alonso B, Gutierrez-Stampa MA, Aguilar-Gama V, et al. Optimal diagnostic accuracy of quantitative faecal immunochemical test positivity thresholds for colorectal cancer detection in primary health care: A community-based cohort study. *United European Gastroenterology Journal* 2021;9(2):256-267. [2] Khan AA, Klimovskij M, Harshen R. Accuracy of faecal immunochemical testing in patients with symptomatic colorectal cancer. *BJS Open* 2020;4(6):1180-1188. Question: Should FIT be used to diagnose CRS in aspirin non-users? | Sensitivity | 0.92 (95% CI: 0.88 to 0.95) | |-------------|-----------------------------| | Specificity | 0.71 (95% CI: 0.69 to 0.73) | Prevalence 11.6% | Outcome | Nº of
studies (Nº | Study design | | Factors that r | idence | Effect per
1,000
patients
tested | Test
accuracy | | | |---|----------------------------------|---|--------------|----------------|--|---|--|------------------------------------|-------------| | | of patients) | | Risk of bias | Indirectness | Inconsistency | Imprecision | Publication
bias | pre-test
probability
of11.6% | CoE | | True positives (patients with CRS) | 1 study
2567
patients | cross-
sectional
(cohort type
accuracy
study) | sectional | sectional | publication
bias strongly
suspected ^b | 107 (102 to
110) | ⊕⊕⊖⊖
Low | | | | False negatives
(patients
incorrectly
classified as not
having CRS) | | | | | | | | 9 (6 to 14) | | | True negatives
(patients
without CRS) | 1 study
2567
patients | cross-
sectional
(cohort type | serious | not serious | not serious | not serious | publication
bias strongly
suspected ^b | 628 (610 to
645) | ⊕⊕○○
Low | | False positives
(patients
incorrectly
classified as
having CRS) | e positives ents rectly ified as | accuracy
study) | | | | | | 256 (239 to
274) | | - a. Poor representativeness of the population. - b. Results based on a single study. ### References: [1] Bujanda L, Sarasqueta C, Vega P, Salve M, Quintero E, Alvarez-Sanchez V, et al. Effect of aspirin on the diagnostic accuracy of the faecal immunochemical test for colorectal advanced neoplasia. *United European Gastroenterol J* 2018;6(1):123-130. **GRADE Tables**