
SUPPLEMENTARY METHODS 

 

Sample collection 

 

Sample collection took place between 2014-2017. Participants were asked to collect 

and freeze the faecal samples at home and were picked up and transported on dry ice 

and stored at –80 ̊C within 24 h after collection. For this study, fresh frozen samples 

were drilled on dry ice until obtaining on average 0.5 mg of faecal material, transferred 

into a 2ml tube and finally shipped to Metabolon facilities for metabolomic 

measurements. Samples from the LifeLines and 1000IBD cohorts were collected using 

the same protocol and processed by the same lab technician. 

 

Metabolite’s quantification 

Metabolomics measurements were performed by Metabolon Inc. (North Carolina, 

U.S.A.). In short, proteins and organic solvent were removed from each sample. Next, 

each sample was divided into four fractions for analysis: two for analysis by two 

separate reverse phases (RP)/UPLC-MS/MS methods with positive ion mode 

electrospray ionisation (ESI), one for analysis by RP/UPLC-MS/MS with negative ion 

mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI. Raw 

data processing and quality control were performed according to Metabolon's 

standards.  

 

In addition to untargeted metabolomics, the concentration of eight short-chain and 

branched-chain fatty acids. i.e., acetic acid (C2), propionic acid (C3), isobutyric acid 

(C4), butyric acid (C4), 2-methyl-butyric acid (C5), isovaleric acid (C5), valeric acid 

(C5) and caproic acid (hexanoic acid, C6), were measured using LC-MS/MS methods. 

Acetic acid was the most abundant SCFA in the faecal samples (mean: 2339 μg/g, 

s.d. 1,131 μg/g), followed by butyrate (mean: 1,072.5 μg/g, s.d. 678 μg/g) and 

propionate (mean: 955.58 μg/g, s.d. 515.8 μg/g), while hexanoic acid presented the 

lowest concentrations (mean 74 μg/g, s.d. 110 μg/g). 
 

Phenotypes selection 

We retrieved the metadata including 180 entries consisting of dietary habits, 

medication and anthropomorphic measurements overlapping in both cohorts and 33 
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and 13 phenotypes specific to the IBD and the control cohorts, respectively. This 

information was included in further analyses if each category had at least 10 entries. 

A complete list of phenotypes is provided in Supplementary Table 1. Samples from 

patients with colectomy or stomas at the time of sample collection were removed from 

our analysis since their faecal samples are not representative of the content of the 

whole intestinal tract (n=68). 

 

To adjust for differences in intestinal transit time, we combined the information about 

“bowel movements per day” present in the control cohort with questionnaires on the 

type of stools and frequencies a day in the IBD cohort. In the group of patients with 

IBD, disease remission or flare was defined using a combination of biomarkers, i.e., 

faecal calprotectin above 200 μg/g and Harvey-Bradshaw index>4 or Simple Clinical 

Colitis Activity Index (SCCAI) >2.5, and colonoscopy reports when available1.  

 

Dietary intake was assessed through a validated food frequency questionnaire (FFQ) 

collected concurrently with faecal samples as described before2,3. Estimated food and 

nutrient intakes were adjusted by total caloric intake using regression analysis 

described in4. In addition, nutrient ratios and dietary patterns were calculated using 

pre-defined scoring systems:  

- Lifelines Protein score, reflecting a higher protein energy percentage within 

the acceptable macronutrient distribution range for protein and a higher plant 

to animal protein ratio.  

- Lifelines Diet score, expressing relative dietary quality with a higher score 

reflecting a high intake of vegetables, fruits, nuts, legumes and fish and lower 

intakes of red and processed meats and high sugar snacks and beverages. 

- Plant-to-Animal protein ratio, reflecting a higher intake of plant protein 

relative to animal protein 

 

Metabolite ratios calculation 

In addition to individual metabolites, we calculated the ratios between molecules of 

interest. Ratios were calculated by dividing the raw metabolite’s levels, log 

transforming and scaling the resulting value.  

In total, we evaluated 12 different ratios. The ratio between primary and secondary 

bile acids (deoxycholate/cholate, lithocholate/chenodeoxycholate, 
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ursodeoxycholate/chenodeoxycholate), the ratio between conjugated and 

unconjugated bile acids (glycol + tauro bile acids / unconjugated bile acid), the ratios 

between kynurenine, tryptamine, serotonin and tryptophan and the ratios between 

omega-3 PUFA and omega-6 PUFA. In our dataset, we could quantify the levels of 

docosahexanoate (DHA), docopentaenoate (DPA), eicosapentaenoate (EPA), 

hexadecatrienoate and stearidonate as omega-3 PUFAs, and arachidonate, 

dihomolinoleate, dihomolinolenate, docosadienoate, hexadecadienoate and linoleate 

as omega-6 PUFAs.  

 

Prediction of microbial abundance 

Metagenomic reads mapping to the human genome were removed and reads 

containing Illumina adapters were trimmed using KneadData (v0.4.6.1)5. Other 

potential contaminants were also filtered out using Kraken26 and the NCBI UniVec 

database, with the confidence parameter set to 0.5. After quality control of the 

sequenced reads, the microbial taxonomic and functional profiles were determined 

using MetaPhlAn (v3.0)5. Moreover, HUMAnN 3.0 pipeline was used to estimate the 

metabolic potential of each microbial community5.  

 

Three samples from patients with IBD were removed due to failure in the identification 

of bacterial species in their faecal sample. Previous to statistical tests, bacterial and 

pathway abundances were transformed using a centred-log ratio approach (CLR). 

Bacterial species and pathways present in more than 20% of the samples were kept 

for further analysis.  

 

Estimation of bacterial metabolic gene clusters in metagenomic samples  

Metagenomic reads were aligned to a collection of predicted metabolic gene clusters 

(MGC) predicted using GutSMASH7. BiG-MAP8 pipeline, with its default parameters, 

was used for read mapping and coverage calculations. In total, 6083 MGC were found 

in our dataset, for which, 1102 were kept after filtering for minimum coverage of 5% in 

the core genes of each cluster. To summarise the overall metabolic capacity of the 

microbial community, MGC were collapsed according to their predicted function by 

summing RPKM values. For example, the 5 different bai operons found in Dorea sp. 

D27, Dorea sp AF36-15-AT, Clostridium scidens (ATC 35704), Clostridium hylemonae 
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(DSM 15053) and Clostridium hiranonis (DSM 13275) genomes, were merged into 

one bai operon category.  

 

Centred log-ratio transformation was applied before data analysis. In total, 136 

pathways were identified and 134 were kept for analysis after removing pathways that 

were present in less than 20% of the samples: “lysine degradation acetate to butyrate” 

and a “nitrate reductase”.  

 

Definition of dysbiosis  

Samples were defined as “dysbiotic” based on the microbiota composition in a similar 

way as described in Lloyd-Price et al.9. Euclidean distances between samples were 

computed on a clr-transformed bacterial abundances matrix. Non-IBD samples were 

used as a reference of eubiosis. Then, we computed the median distance between 

each sample and this reference group. A threshold for dysbiosis was defined at the 

95th quantile of the median distances between non-IBD samples. Samples exceeding 

this threshold were considered dysbiotic.  

 

Genome-wide association analysis power analysis 

Power estimations were conducted as described here10. First the relation between 

sample size and detection power was calculated while taking a grid search in the 

variance explained by the SNP (0.0~0.1). We then calculated the effects of metabolite 

detection rates (10%~100%) on the statistical power. The sample size in this study 

allowed us to have 80% power to detect genetic associations with 8% trait variation. 

The genetic effect of variants located in the NAT2 gene can explain 8% of the 5-

acetylamino-6-amino-3-methyluracil variation (a metabolite with ~99% of prevalence 

in both IBD and controls) (Suppl. Figure 8). 

 

Defining host genetics combining whole-exome sequencing (WES) and global 

screening array (GSA)  

Library preparation, sequencing and variant calling were done at the Broad Institute of 

the Massachusetts Institute of Technology (MIT) and Harvard University. On average, 

86.06 million high-quality reads were generated per sample and 98.85% of reads were 

aligned to a human reference genome (hg19). Moreover, 81% of the exonic regions 

were covered with a read depth >30x. Next, the Genome Analysis Toolkit (GATK) was 
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used for variant calling11. Variants with a call rate <0.99 or Hardy-Weinberg equilibrium 𝜒2 test with p-value<0.0001 were excluded using PLINK 1.912  

 

GSA data was generated using the Infinium GSA-24 v1.0 BeadChip combined with 

the optional multi-Disease drop-in panel. Genotypes were called using OptiCall, QC 

steps were performed using PLINK 1.9 (variants with minor allele frequency (MAF) < 

5%, call rate < 0.99 or Hardy-Weinberg equilibrium 𝜒2 test p-value<0.0001). Genotype 

data were phased using the Eagle13 and imputed to the Haplotype Reference 

Consortium reference panel using the Michigan Imputation Server14. After imputation, 

genetic variants were filtered for imputation quality R2 > 0.4. GSA genotype data was 

combined with WES data using PLINK 1.9. Variants with a MAF < 5% were removed.  

In total, the combination of GSA and exome data covered 7,798,353 variants for 397 

patients with IBD (CD =234 and UC=166) and 218 Lifelines Deep individuals. 

 

Prediction of IBD based on metabolomics profiles 

 

We used CoDaCoRe15 (v 0.0.1) to identify ratios of metabolites and bacterial 

abundances that could predict IBD and its sub-phenotypes. Patients with a history of 

intestinal surgeries (n = 136) were excluded, and only highly prevalent metabolites 

(>70% of the samples) were considered in this analysis. Here, we first split the data 

into a training and a test set for each prediction, using 75% of the samples in the 

training process. Next, we estimated the added predictive value of using ratios of 

metabolites compared to a model including only host age, sex, BMI and faecal 

calprotectin levels (calprotectin levels >200 g/g, yes/no). Furthermore, we tested if 

the ratio of metabolite identified to discriminate between the samples from IBD and 

non-IBD participants had a predictive value in a group of less sever patients. Patients 

with a less severe IBD were defined as participants with calprotectin <200g/g and 

SSCAI <2.5 or Harvey Bradshaw<5 at the time of sampling and no records of active 

disease periods 1 year prior and 1year post sample collection.  

 

Next, we explored the levels of the predictive metabolites in a separate cohort of 

samples from the Human Microbiome Project 2 (HMP2)9. Data was obtained through 

the Metabolomics Workbench portal (https://www.metabolomicsworkbench.org). Due 
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to the differences in metabolomic platforms and metabolite annotation libraries, we 

encountered some challenges in aligning the metabolites found in our study with those 

reported in the HMP2 cohort. For example, lactosyl-N-palmitoyl-sphingosine was not 

annotated in their data, but we identified a structurally similar molecule, N-palmitoyl-

sphingosine or Cer(d18:1/16:0), which showed a strong correlation with lactosyl-N-

palmitoyl-sphingosine levels in our dataset (Spearman correlation, rho = 0.70). To 

further validate our findings, we compared the ratio Cer(d18:1/16:0) / L-urobilin 

between IBD and non-IBD samples at each time point where at least 5 non-IBD 

samples were available. 

 

Co-occurrence patterns between bacteria and metabolites 

The QIIME16 implementation of mmvec v.1.0.617 was used to estimate the co-

occurrence probabilities between highly prevalent metabolites and bacteria (Suppl. 

Table 21).  

Furthermore, we assessed the associations between individual microbiome features 

(taxa, gene clusters and metabolic pathways) and metabolites using regression 

models. The association between metabolites levels and bacterial taxa were assessed 

using two different models: firstly, recoding bacteria as detected or undetected (1 and 

0) and secondly, considering only non-zero abundance value. For bacterial pathways 

and gene clusters only the second approach was used. In addition to the previously 

mentioned confounders (age, sex, BMI, sample storage time, batch, amount of faecal 

material, estimate bowel movements a day and intestinal resections), dysbiosis 

(yes/no) and disease phenotype (CD, UC, non-IBD) were also included as covariates 

in the model. Finally, we additionally tested context-specific effects by adding an 

interaction factor between microbial features and dysbiosis as predictor in the model.     

 

Association between metabolites and phenotypes 

 

An association analysis between phenotypes and metabolites was performed within 

each cohort (controls, CD and UC). We included information about lifestyle, including 

use of 31 different types of medication, dietary patterns represented by 144 food 

frequency–related scores and the levels of 3 faecal biomarkers (faecal calprotectin, 

chromogranin A and human beta-defensin) (see Phenotypes selection section). Each 
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phenotype–metabolite combination was tested using linear regression, including age, 

sex, BMI, bowel movements per day and technical factors as covariates. 

 

Mediation analysis 

 

To establish if associations between phenotypes and metabolites could be related to 

the intestinal microbiota, we performed a mediation analysis in each cohort (CD, UC 

and controls). Phenotypes were considered exposures and metabolites outcomes. For 

each phenotype with at least one significant association with a metabolite (FDR<0.05) 

we first selected the potential mediators by correlating the phenotype with bacterial 

abundances. Exposures, mediators, and outcomes were standardized prior to 

analysis and the impact of confounders (age, sex, BMI, estimate bowel movements a 

day, sample storage time (month), batch, sequencing read depth) was regressed in 

both mediators and outcomes. Because multiple bacteria can mediate in the same 

phenotype-metabolite relation, we used the regmed R’s package (v. 2.0.5) to perform 

a regularized mediation analysis. This approach allows the input of multiple features 

as mediators, selecting the most relevant factors in the exposure-outcome relation. 

Additionally, for each mediated association, we also estimated the proportion of 

mediated effects using the mediation (v. 4.5) package in R. 

 

Differential abundance analyses of faecal microbiome features 

Linear regression analysis was used to identify microbiome features (taxa, pathways 

and metabolic gene clusters, Suppl. Table 22) that differed between controls and IBD. 

Age, sex, BMI, average bowel movements per day, history of intestinal resections 

(yes/no) and sequencing read depth were included as covariates in the regression 

models. 

 

Metabolite levels prediction 

For each of the metabolites and in each of the 8 defined models, we performed a 5-

fold cross-validation (CV) procedure to select the best set of predictors based on the 

mean of squared errors. A 10-fold CV step was used in each of the CV-training sets 

to tune the lasso penalty parameter (lambda) in the lasso regression. Using the 

estimates of the model minimising the mean of squared errors, we computed the R2 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2022-328048–14.:10 2023;Gut, et al. Vich Vila A



coefficient in the whole dataset. We defined 8 different models representing different 

data categories available in both cohorts (IBD and non-IBD samples).  

1) Host and technical factors: Which included information about the sex, age, BMI, 

average bowel movements per day, storage time at -80C, batch and amount 

in grams of sample used for measuring metabolomics. All other models also 

included these variables to consider confounders' effects.    

2) Diet: 119 dietary food patterns adjusted by total caloric intake.  

3) Biomarkers: The levels of chromogranin A, human-beta defensin 2 and faecal 

calprotectin levels above 200 (yes/no).  

4) Medication: The use of 22 medication categories (yes/no). 

5) Disease: IBD (yes/no) 

6) Taxa abundance: Relative abundance of 109 microbial species. 

7) Bacterial pathways: 326 MetaCyc pathways 

8) All: A model containing all variables described in the previous model.   
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