Skip to main content

Expression of Recombinant Proteins with Uniform N-Termini

  • Protocol
  • First Online:
Book cover Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

Heterologously expressed proteins in Escherichia coli may undergo unwanted N-terminal processing by methionine and proline aminopeptidases. To overcome this problem, we present a system where the gene of interest is cloned as a fusion to a self-splicing mini-intein. This fusion construct is expressed in an engineered E. coli strain from which the pepP gene coding for aminopeptidase P has been deleted. We describe a protocol using human cationic trypsinogen as an example to demonstrate that recombinant proteins produced in this expression system contain homogeneous, unprocessed N-termini.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witt, H., Luck, W., Becker, M. (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117, 7–10.

    Article  PubMed  CAS  Google Scholar 

  2. Pfützer, R. H., Whitcomb, D. C. (1999) Trypsinogen mutations in chronic pancreatitis. Gastroenterology 117, 1507–1508.

    Article  PubMed  Google Scholar 

  3. Chen, J. M., Raguenes, O., Ferec, C., Deprez, P. H., Verellen-Dumoulin, C., Andriulli, A. (1999) The A16V signal peptide cleavage site mutation in the cationic trypsinogen gene and chronic pancreatitis. Gastroenterology 117, 1508–1509.

    Article  PubMed  CAS  Google Scholar 

  4. Teich, N., Bauer, N., Mössner, J., Keim, V. (2002) Mutational screening of patients with nonalcoholic chronic pancreatitis: identification of further trypsinogen variants. Am J Gastroenterol 97, 341–346.

    PubMed  CAS  Google Scholar 

  5. Sahin-Tóth, M. (2000) Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J Biol Chem 275, 22750–22755.

    Article  PubMed  Google Scholar 

  6. Sahin-Tóth, M., Tóth, M. (2000) Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun 278, 286–289.

    Article  PubMed  Google Scholar 

  7. Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Boosman, A., Chang, S. (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169, 751–757.

    PubMed  CAS  Google Scholar 

  8. Yaron, A., Mlynar, D. (1968) Aminopeptidase-P. Biochem Biophys Res Commun 32, 658–663.

    Article  PubMed  CAS  Google Scholar 

  9. Király, O., Guan, L., Szepessy, E., Tóth, M., Kukor, Z., Sahin-Tóth, M. (2006) Expression of human cationic trypsinogen with an authentic N terminus using intein-mediated splicing in aminopeptidase P deficient Escherichia coli. Protein Expr Purif 48, 104–111.

    Article  PubMed  Google Scholar 

  10. Wu, H., Xu, M. Q., Liu, X. Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387, 422–432.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, T. C., Jr., Benner, J., Xu, M. Q. (1999) The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 274, 18359–18363.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshimoto, T., Murayama, N., Honda, T., Tone, H., Tsuru, D. (1988) Cloning and expression of aminopeptidase P gene from Escherichia coli HB101 and characterization of expressed enzyme. J Biochem 104, 93–97.

    PubMed  CAS  Google Scholar 

  13. Yoshimoto, T., Tone, H., Honda, T., Osatomi, K., Kobayashi, R., Tsuru, D. (1989) Sequencing and high expression of aminopeptidase P gene from Escherichia coli HB101. J Biochem 105, 412–416.

    PubMed  CAS  Google Scholar 

  14. Datsenko, K. A., Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  15. Lengyel, Z., Pál, G., Sahin-Tóth, M. (1998) Affinity purification of recombinant trypsinogen using immobilized ecotin. Protein Expr Purif 12, 291–294.

    Article  PubMed  CAS  Google Scholar 

  16. Tabor, S., Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82, 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  17. Pál, G., Sprengel, G., Patthy, A., Gráf, L. (1994) Alteration of the specificity of ecotin, an E. coli serine proteinase inhibitor, by site directed mutagenesis. FEBS Lett 342, 57–60.

    Article  PubMed  Google Scholar 

  18. Chung, C. H., Ives, H. E., Almeda, S., Goldberg, A. L. (1983) Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J Biol Chem 258, 11032–11038.

    PubMed  CAS  Google Scholar 

  19. Neu, H. C., Heppel, L. A. (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240, 3685–3692.

    PubMed  CAS  Google Scholar 

  20. Aiyar, A., Xiang, Y., Leis, J. (1996) Site-directed mutagenesis using overlap extension PCR. Methods Mol Biol 57, 177–191.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Barry L. Wanner (Department of Biological Sciences, Purdue University, West Lafayette, IN) for sharing the plasmids and bacterial strains of the Red recombinase-based gene deletion system. The valuable support and contributions of Ronald Kaback, Edit Szepessy, Zoltán Kukor, and Miklós Tóth are gratefully acknowledged. This work was supported by NIH Grant DK058088 to M.S.-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Sahin-Tóth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Király, O., Guan, L., Sahin-Tóth, M. (2011). Expression of Recombinant Proteins with Uniform N-Termini. In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics