Skip to main content
Log in

Human colonic motility: physiological aspects

  • Reviews
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

From the point of view of its motor activity, the human colon is probably the least understood of the abdominal hollow viscera. This is due to several facts: a) its proximal portions are relatively inaccessible due to anatomical reasons; b) there is no reliable animal model due to the considerable anatomic-physiological differences among mammals. For instance, most deductions about human colonic motor activity have been drawn from experiences in cats and dogs, in which the colon displays a cecum which is almost atrophic, and the viscus is featureless and C-shaped, without the haustrations and the sharp angulations seen in man [1], c) the wide fluctuations of motility in the daily time course of the same individual makes the interpretation of many studies difficult [2, 3, 4], especially considering the fact that, until recently, most of the studies on human colonic motility have been conducted for relatively short (30–180 min) recording periods [5]. Recently, however, techniques that allow recording from the proximal portions of the human colon have been developed, and prolonged (24 h or more) observations of myoelectrical and contractile events have been achieved, thus improving our knowledge of the normal physiologic properties of the viscus [6, 7]. These informations have furthermore been integrated and confirmed by scintigraphic techniques (less invasive), that allow the measurement of intracolonic flow activity [8, 9]. The purpose of the present paper is to review the physiological aspects of colonic motility in man, quoting animal studies where human ones are lacking. We will briefly introduce some basic concepts, then a more detailed description of the main topic will follow.

Résumé

Le côlon humain est probablement le viscère creux de l'abdomen dont on connaît le moins l'activité motrice. Ceci résults de plusieurs facteurs: a) la partie proximale est relativement inaccessible pour des raisons anatomiques; b) il n'y a pas de modèle animal fiable en raison des différences anatomo-physiologiques considérables qui existent chez les mammifères. Par example, la plupart des déductions quant à l'activité motrice du côlon humain, résultent d'expériences chez les chats et les chiens dont le côlon présente un caecum le plus souvent atrophique et dont l'aspect est sans particularité, en forme de C, sans les haustrations et les angulations aiguës que l'on observe chez l'homme; c) les grandes fluctuations que l'on observe dans la motilité d'un même individu au cours d'une journée rendent difficiles l'interprétation de nombreuses études, particulièrement si l'on considère le fait que, jusqu'à une date récente, la plupart des études menées chez l'homme sur la motilité colique, comportaient des enregistrements sur des périodes relativement courtes (30 à 180 min). Récement, toutefois, des techniques permenttant des enregistrements de la partie proximale du côlon humain ont été développées autorisant des observations prolongées (24 h et plus) de l'activité myoélectrique et contractile permettant d'améliorer nos connaissances des propriétés physiologiques normales de cet organe. Ces données ont été intégrées par ailleurs et confirmées par des techniques scintigraphiques moins invasives permettant des mesures des flux intra-coliques. Le but de l'article présent est de faire une revue des aspects physiologiques de la motilité colique chez l'homme tout en citant les études animales lorsque des études identiques font défaut chez l'homme. Nous introduirons brièvement quelques concepts de base puis une description plus détaillée du sujet principal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Christensen J (1991) Gross and microscopic anatomy of the large intestine. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology, and disease. Raven Press, New York, pp 13–15

    Google Scholar 

  2. Christensen J (1987) Motility of the colon. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn. Raven Press, New York, pp 595–629

    Google Scholar 

  3. Huizinga JD, Daniel EE (1991) Motor functions of the colon. In: Phillips SF, Pemberton JH, Shorter RG (eds) The large intestine: physiology, pathophysiology, and disease. Raven Press, New York, pp 93–114

    Google Scholar 

  4. Sarna SK (1991) Physiology and pathophysiology of colonic motor activity. Part I. Dig Dis Sci 36:827–862

    Google Scholar 

  5. Bassotti G, Crowell MD, Whitehead WE (1993) Contractile activity of the human colon: lessons from 24 hour studies. Gut 34:129–133

    Google Scholar 

  6. Frexinos J, Bueno L, Fioramonti J (1985) Diurnal changes in myoelectric spiking activity of the human colon. Gastroenterology 88:1104–1110

    Google Scholar 

  7. Narducci F, Bassotti G, Gaburri M, Morelli A (1987) Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28:17–25

    Google Scholar 

  8. Camilleri M, Zinsmeister A (1992) Towards a relatively inexpensive, noninvasive, accurate test for colonic motility disorders. Gastroenterology 103:36–42

    Google Scholar 

  9. Moreno-Osset E, Bazzocchi G, Lo S, et al. (1989) Association between postprandial changes in colonic intraluminal pressure and transit. Gastroenterology 96:1265–1273

    Google Scholar 

  10. Meyer JE (1987) Motility of the stomach and gastroduodenal junction. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 393–410

    Google Scholar 

  11. Sarna SK, Otterson MF (1989) Small intestinal physiology and pathophysiology. Gastroenterol Clin North Am 18:375–404

    Google Scholar 

  12. Sarna SK (1989) In vivo myoelectric activity: methods, analysis and interpretation. In: Wood J (ed) Handbook of Physiology. Gastrointestinal Motility and Circulation. American Physiological Society. Bethesda, pp 817–863

    Google Scholar 

  13. Chambers MM, Bowes KL, Kingma YL, Bannister C, Cote KR (1981) In vitro electrical activity in human colon. Gastroenterology 81:502–508

    Google Scholar 

  14. Huizinga JD, Stern HS, Diamant NE, El-Sharkawy TY (1985) Electrophysiological control of motility in the human colon. Gastroenterology 88:500–511

    Google Scholar 

  15. Huizinga JD, Stern HS, Chow E, Diamant NE, El-Sharkawy TY (1986) Electrical basis of excitation and inhibition of human colonic smooth muscle. Gastroenterology 90:1197–1204

    Google Scholar 

  16. Collman PI, Grundy D, Scratcherd T, Walch RA (1984) Vagovagal reflexes to the colon of the anaestethized ferret. J Physiol (London) 352:395–402

    Google Scholar 

  17. Szurszewski JH, King BF (1989) Physiology of prevertebral ganglia in mammals with special reference to inferior mesenteric ganglion. In: Wood JD (ed) Handbook of physiolog —The gastrointestinal system. American Physiological Society, Bethesda, pp 519–592

    Google Scholar 

  18. deGroat WC, Krier J (1979) The central control of the lumbar sympathetic pathway to the large intestine of the cat. J Physiol (London) 289:449–469

    Google Scholar 

  19. Weems WA, Szurszewski JH (1977) Modulation of colonic motility by peripheral neural inputs to neurons of the inferior mesenteric ganglion. Gastroenterology 73:272–278

    Google Scholar 

  20. Garry RC (1933) The nervous control of the caudal region of the large bowel in the cat. J Physiol (London) 73:422–431

    Google Scholar 

  21. Kuntz A, Van Buskirk C (1941) Reflex inhibition of bile flow and intestinal motility mediated through decentralized coeliac plexus. Proc Soc Exp Biol Med 46:519–523

    Google Scholar 

  22. Bulygin IAA (1983) A consideration of the general principles of organization of sympathetic ganglia. J Auton Nerv Syst 8:303–330

    Google Scholar 

  23. Sjoqvist A, Hallerback B, Glise H (1985) Reflex adrenergic inhibition of colonic motility in anesthetized rat caused by nociceptive stimuli of peritoneum. An α2-adrenoceptor-mediated response. Dig Dis Sci 30:749–754

    Google Scholar 

  24. Fukai K, Fukuda H (1984) The intramural pelvic nerves in the colon of dogs. J Physiol (London) 354:89–98

    Google Scholar 

  25. Gillespie JS (1968) Electrical activity in the colon. In: Code CF (ed) Handbook of physiology. Waverly Press, Baltimore pp 2073–2120

    Google Scholar 

  26. Sarna SK, Ryan RP, Kubacki DM, Cowles VE (1988) Effects of pelvic nerve section on colonic and cecal motor activity. Gastroenterology 95:887

    Google Scholar 

  27. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol (London) 24: 99–143

    Google Scholar 

  28. Kosterlitz HW, Pirie VW, Robinson JA (1956) The mechanism of the peristaltic reflex in the isolated guinea-pig ileum. J Physiol (London) 133:681–694

    Google Scholar 

  29. Hirst GDS, McKirdy H (1974) Nervous mechanism for descending inhibition in guinea-pig small intestine. J Physiol (London) 283:129–143

    Google Scholar 

  30. Crema A, Frigo GM, Lecchini S (1970) A pharmacological analysis of the peristaltic reflex in the isolated colon of the guinea-pig or cat. Br J Pharmacol 39:334–345

    Google Scholar 

  31. Wienbeck M (1972) The electrical activity of the cat colon in vivo. II. The effects of bethanechol and morphine. Res Exp Med 158:280–287

    Google Scholar 

  32. Costa M, Furness JB (1976) The peristaltic reflex: an analysis of he nerve pathways and their pharmacology. Naunyn-Schmiedberg's Arch Pharmacol 294:47–60

    Google Scholar 

  33. Karaus M, Sarna SK (1987) Giant migrating contractions during defecation in the dog colon. Gastroenterology 92: 925–933

    Google Scholar 

  34. Hukuhara T, Nakayama S, Nanba R (1961) The role of the intrinsic mucosal reflex in the fluid transport through the denervated colonic loop. Jpn J Physiol 11:71–79

    Google Scholar 

  35. Gonda T, Daniel EE, Kostolanska F, Oki M, Fox JET (1988) Neural control of canine colon motor function: studies in vivo. Can J Physiol Pharmacol 66:350–358

    Google Scholar 

  36. Ritchie JA, Ardran GM, Truelove SC (1962) Motor activity of the sigmoid colon of humans. A combined study by intraluminal pressure recording and cineradiography. Gastroenterology 43:642–668

    Google Scholar 

  37. Ritchie JA (1968) Colonic motor activity and bowel function. I. Normal movement of contents. Gut 9:442–456

    Google Scholar 

  38. Ritchie JA (1968) Colonic motor activity and bowel function. II. Distribution and incidence of motor activity at rest and after food and carbachol. Gut 9:502–511

    Google Scholar 

  39. Soffer EE, Scalabrini P, Wingate DL (1989) Prolonged ambulant monitoring of human colonic motility. Am J Physiol 257:G601-G606

    Google Scholar 

  40. Bueno L, Fioramonti J, Ruckebusch Y, Frexinos J, Coulom P (1980) Evaluation of colonic myoelectrical activity in health and functional disorders. Gut 21:480–485

    Google Scholar 

  41. Bueno L, Fioramonti J, Frexinos J, Ruchebusch Y (1980) Colonic myoelectrical activity in diarrhea and constipation. Hepato-Gastroenterol 27:381–398

    Google Scholar 

  42. Fioramonti J (1981) Etude comparee des fonctions motrices du gros intestin. These de Doctour d'Etat-Sciences. Universite' Paul Sabatier, Toulouse

  43. Bassotti G, Bucaneve G, Pelli MA, Morelli A (1990) Contractile frequency patterns of the human colon. J Gastrointest Motility 2:73–78

    Google Scholar 

  44. Chowdhury AR, Dinoso VP, Lorber SH (1976) Characterisation of a hyperactive segment at the rectosigmoid junction. Gastroenterology 71:584–588

    Google Scholar 

  45. Rose S, Reynolds JC (1992) Motility disorders of the colon. Principles and practice. In Anuras S, ed. Motility disorders of the gastrointestinal tract. Raven Press, New York, pp 385–426

    Google Scholar 

  46. Schuurkes JAJ, Tukker JJ (1980) The interdigestive colonic motor complex of the dog. Arch Int Pharmacodyn Ther 247:329–332

    Google Scholar 

  47. Fioramonti J, Bueno L (1980) Diurnal changes in colonic motor profile in conscious dogs. Dig Dis Sci 28:257–264

    Google Scholar 

  48. Sarna SK, Condon R, Cowles V (1984) Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol 246: G355-G360

    Google Scholar 

  49. Sarna SK (1986) Myoelectric correlates of colonic motor complexes and contractile activity. Am J Physiol 250:G113-G120

    Google Scholar 

  50. Enck P, Whitehead WE, Shabsin H, Nikoomanesh P, Schuster MM (1989) Stability of myoelectric slow waves and contractions recorded from the distal colon. Psychophysiology 26:62–69

    Google Scholar 

  51. Orkin BA, Hanson RB, Kelly KA (1989) The rectal motor complex. J Gastrointest Motility 1:5–8

    Google Scholar 

  52. Kumar D, Williams NS, Waldron D, Wingate DL (1989) Prolonged manometric recording of anorectal motor activity in ambulant human subjects: evidence of periodic activity. Gut 30:1007–1011

    Google Scholar 

  53. Ferrara A, Pemberton JH, Levin KE, Hanson RB (1993) Relationship between anal canal tone and rectal motor activity. Dis Colon Rectum 36:337–342

    Google Scholar 

  54. Orkin BA, Hanson RB, Kelly KA, Phillips SF, Dent J (1991) Human anal motility while fasting, after feeding, and during sleep. Gastroenterology 100:1016–1023

    Google Scholar 

  55. Frexinos J, Staumont G, Fioramonti J, Bueno L (1989) Effects of sennosides on colonic myoelectric activity in man. Dig Dis Sci 34:214–219

    Google Scholar 

  56. Furukawa Y, Cook IJ, Panagopoulos V, et al. (1990) Regional and diurnal variations in human colonic pressure activity characterised by prolonged pancolonic manometry. Gastroenteroly 98:A352

    Google Scholar 

  57. Bassotti G, Betti C, Erbella GS, et al. (1990) Colonic mass movements in diarrhea-predominant IBS patients. Gastroenterology 98:A326

    Google Scholar 

  58. Reddy SN, Bazzocchi G, Chan S et al. (1991) Colonic motility and transit in health and ulcerative colitis. Gastroenterology 101:1289–1297

    Google Scholar 

  59. Hertz AF (1907) The passage of food along the human alimentary canal. Guy's Hosp Rep 61:389–427

    Google Scholar 

  60. Holzknecht G (1909) Die normale Peristaltik des Colon. Munch Med Wochenschr 56:2401–2403

    Google Scholar 

  61. Hertz AF, Newton A (1913) The normal movements of colon in man. J Physiol (London) 47:57–65

    Google Scholar 

  62. Ritchie JA (1972) Mass peristalsis of the human colon after contact with oxyphenisatin. Gut 13:211–219

    Google Scholar 

  63. Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and in relationship to meals and somatic activity. Gut 11:91–99

    Google Scholar 

  64. Torsoli A, Ramorino ML, Ammaturo MV, et al. (1971) Mass movements and intracolonic pressures. Am J dig Dis 16:693–696

    Google Scholar 

  65. Bassotti G, Gaburri M (1988) Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am J Physiol 255:G660-G664

    Google Scholar 

  66. Crowell MD, Bassotti G, Cheskin LJ, Schuster MM, Whitehead WE (1991) Method for prolonged ambulatory monitoring of high-amplitude propagated contractions from colon. Am J Physiol 261:G263-G268

    Google Scholar 

  67. Macewen W (1904) The function fo the caecum and appendix. Lancet 8:995–1000

    Google Scholar 

  68. Kellow JF, Borody TJ, Phillips SF, Tucker RL, Haddad AC (1986) Human interdigestive motility: variations in patterns from esophagus to colon. Gastroenterology 91:386–395

    Google Scholar 

  69. Bassotti G, Betti C, Morelli A (1992) Colonic highamplitude propagated contractions (mass movements):repeated 24-h studies in healthy volunteers. J Gastrointest Motility 4:187–191

    Google Scholar 

  70. Kamm MA, Lennard-Jones JE, Thompson DG, Sobnack R, Garvie NW, Granowska M (1988) Dynamic scanning defines a colonic defect in severe idiopathic constipation. Gut 29:1085–1092

    Google Scholar 

  71. Garcia D, Hita G, Mompean B, et al. (1991) Colonic motility: electric and manometric description of mass movements. Dis Colon Rectum 34:577–584

    Google Scholar 

  72. Hardcastle JD, Mann CV (1968) Study of large bowel peristalsis. Gut 9:512–520

    Google Scholar 

  73. Torsoli A, Ramorino ML, Crucioli V (1968) The relationships between anatomy and motor activity of the colon. Am J Dig Dis 13:462–467

    Google Scholar 

  74. Bassotti G, Gaburri M, Imbimbo BP, Morelli A, Whitehead WE (1994) Distension stimulated propagated activity in the human colon. Dig Dis Sci 39:1947–1954

    Google Scholar 

  75. Bassotti G, Imbimbo BP, Betti C, et al. (1991) Edrophonium chloride for testing colonic contractile activity in man. Acta Physiol Scand 141:289–293

    Google Scholar 

  76. Reynolds JR, Evans DF, Clarke AG, Hardcastle JD (1989) Twenty-four hour colonic motility patterns in normal ambulant subjects. J Ambulat Monitor 2:303–312

    Google Scholar 

  77. Hagihara PF, Griffen PO (1972) Physiology of the colon and rectum. Surg Clin North Am 52:797–805

    Google Scholar 

  78. Adler HF, Atkinson AJ, Ivy AC (1941) A study of the motility of the human colon. An explanation of dysynergia of the colon, or of the 'unstable colon. Am J Dig Dis 8:197–202

    Google Scholar 

  79. Posey EL, Bargen JA (1951) Observations of normal and abnormal human intestinal motor function. Am J Med Sci 221:10–20

    Google Scholar 

  80. Rosemblum MJ, Cummings AJ (1954) The effects of sleep and of amytal on the motor activity of the human sigmoid colon. Gastroenterology 27:445–450

    Google Scholar 

  81. Kerlin P, Zinsmeister A, Phillips S (1983) Motor responses to food of the ileum, proximal colon, and distal colon of healthy humans. Gastroenterology 84:762–770

    Google Scholar 

  82. Crowell MD, Musial F, French W, Kittur D, Anderson D, Whitehead WE (1992) Prolonged ambulatory monitoring of colonic motor activity in the pig. Physiol Behav 52:471–474

    Google Scholar 

  83. Bassotti G, Bucaneve G, Betti C, Morelli A (1990) Sudden awakening from sleep: effects on proximal and distal colonic contractile activity in man. Eur J Gastroenterol Hepatol 2:475–478

    Google Scholar 

  84. Duthie HL (1978) Colonic response to eating. Gastroenterology 75:527–529

    Google Scholar 

  85. Christensen J (1985) The response of the colon to eating. Am J Clin Nutr 42:1025–1032

    Google Scholar 

  86. Frexinos J, Fioramonti J, Bueno L (1986) Response colique a l'alimentation. Regulation et anomalies. Gastroenterol. Clin Biol 10:837–840

    Google Scholar 

  87. Bassotti G (1990) The response of the human colon to food ingestion. Diabetes Nutr Metab 3:91–94

    Google Scholar 

  88. Bassotti G, Betti C, Imbimbo BP, Pelli MA, Morelli A (1989) Colonic motor response to eating: a manometric investigation in proximal and distal portions of the viscus in man. Am J Gastroenterol 84:118–122

    Google Scholar 

  89. Krevsky B, Malmud LS, D'Ercole F, Maurer AH, Fisher RS (1986) Colonic transit scintigraphy: a physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterology 91:1102–1112

    Google Scholar 

  90. Dapoigny M, Trolese JF, Bommelaer G, Tournut R (1988) Myoelectric spiking activity of right colon, left colon and rectosigmoid of healthy humans. Dig Dis Sci 33:1007–1012

    Google Scholar 

  91. Jian R, Najean Y, Bernier JJ (1984) Measurement of intestinal progression of a meal and its residues in normal subjects and patients with functional diarrhoea by a dual isotope technique. Gut 25:728–731

    Google Scholar 

  92. Picon L, Lemann M, Flourié B, Rambaud JC, Rain JD, Jian R (1992) Right and left colonic transit after eating assessed by a dual isotopic technique in healthy humans. Gastroenterology 103:80–85

    Google Scholar 

  93. Snape WJ, Matarazzo SA, Cohen S (1978) Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 75:373–378

    Google Scholar 

  94. Wright SH, Snape WJ, Battle W, Cohen S, London RL (1980) Effect of dietary components on gastrocolonic response. Am J Physiol 238:G228-G232

    Google Scholar 

  95. Levinson S, Bhasker M, Gibson TR, Morin R, Snape WJ (1985) Comparison of intraluminal and intravenous mediators of colonic response to eating. Dig Dis Sci 30:33–39

    Google Scholar 

  96. Battle WM, Cohen S, Snape WJ (1980) Inhibition of postprandial colonic motility after ingestion of an amino acid mixture. Dig Dis Sci 25:647–652

    Google Scholar 

  97. Snape WJ, Wright SH, Battle WM, London RL, Cohen S (1979) The gastrocolonic response: evidence for a neural mechanism. Gastroenterology 77:1235–1240

    Google Scholar 

  98. Wiley J, Tatum D, Keinath R, Owyang C (1988) Participation of gastric mechanoreceptors and intestinal chemoreceptors in the gastrocolonic response. Gastroenterology 94:1144–1149

    Google Scholar 

  99. Sun EA, Snape WJ, Cohen S, Renny A (1982) The role of opiate receptors and cholinergic neurons in the gastrocolonic response. Gastroenterology 82:689–693

    Google Scholar 

  100. Narducci F, Bassotti G, Daniotti S, Del Soldato P, Pelli MA, Morelli A (1985) Identification of muscarinic receptor subtype mediating colonic response to eating. Dig Dis Sci 30:124–128

    Google Scholar 

  101. Bassotti G, Imbimbo BP, Gaburri M, Daniotti S, Morelli A (1987) Transverse and sigmoid colon motility in healthy humans: effects of eating and of cimetropium bromide. Digestion 3:163–169

    Google Scholar 

  102. Sarna SK (1991) Physiology and pathophysiology of colonic motor activity. Part two. Dig Dis Sci 36:998–1018

    Google Scholar 

  103. Renny A, Snape WJ, Sun EA, London R, Cohen S (1983) Role of cholecystokinin in the gastrocolonic response to a fat meal. Gastroenterology 85:17–21

    Google Scholar 

  104. Niederau C, Faber S, Karaus M (1992) Cholecystokinin's role in the regulation of colonic motility in health and in irritable bowel syndrome. Gastroenterology 102:1889–1898

    Google Scholar 

  105. Rogers J, Raimundo AH, Misiewicz JJ (1993) Cephalic phase of colonic pressure response to food. Gut 34:537–543

    Google Scholar 

  106. Grossman MI (1967) Neural and hormonal stimulation of gastric secretion of acid. In: Code CF (ed) Handbook of physiology, Vol. II. American Physiological Society, Washington DC pp 835–863

    Google Scholar 

  107. Farrell JI (1982) Contributions to the physiology of gastric secretion. The vagi as the sole efferent pathway for the cephalic phase of gastric secretion. Am J Physiol 85:685–687

    Google Scholar 

  108. Hinton JM, Lennard-Jones JE, Young AC (1969) A new method for studying gut transit times using radioopaque markers. Gut 10:842–847

    Google Scholar 

  109. Arhan P, Devroede G, Jehannin B, et al. (1981) Segmental colonic transit time. Dis Colon Rectum 24:625–629

    Google Scholar 

  110. Chaussade S, Khyari A, Roche H, et al. (1989) Determination of total and segmental colonic transit time in constipated patients: results in 91 patients with a new simplified technique. Dig Dis Sci 34:1168–1172

    Google Scholar 

  111. Proano M, Camilleri M, Phillips SF, Brown ML, Thomforde GM (1990) Transit of solids through the human colon: regional quantification in the unprepared bowel. Am J Physiol 258:G856-G862

    Google Scholar 

  112. Metcalf AM, Phillips SF, Zinsmeister AR, et al. (1987) Simplified assessment of segmental colonic transit time. Gastroenterology 92:40–47

    Google Scholar 

  113. Cannon WB (1902) The movements of the intestine studied by means of the roentgen rays. Am J Physiol 66:251–277

    Google Scholar 

  114. Elliot TR, Barclay-Smith EA (1904) Antiperistalsis and other muscular activities of the colon. J Physiol (London) 31: 272–304

    Google Scholar 

  115. Connell AM, Logan CJH (1967) The role of gastrin in gastroileocolic response. Am J Dig Dis 12:277–284

    Google Scholar 

  116. Bazzocchi G, Ellis J, Villanueva-Meyer J, et al. (1990) Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology 98:686–693

    Google Scholar 

  117. Kamath PS, Phillips SF, O'Connor MK, Brown ML, Zinsmeister AR (1990) Colonic capacitance and transit in man: modulation by luminal contents and drugs. Gut 31:443–449

    Google Scholar 

  118. Fich A, Steadman CH, Phillips SF, et al. (1992) Ileocolonic transit does not change after right hemicolectomy. Gastroenterology 103:794–799

    Google Scholar 

  119. Azpiroz F, Malagelada JR (1987) Gastric tone measured by an electronic barostat in health and postsurgical gastroparesis. Gastroenterology 92:934–943

    Google Scholar 

  120. Bell AM, Pemberton JH, Hanson RB, Zinsmeister AR (1991) Variation of muscle tone of the human rectum: recordings with an electromechanical barostat. Am J Physiol 23:G17-G25

    Google Scholar 

  121. Steadman CJ, Phillips SF, Camilleri M, Talley NJ, Haddad A, Hanson R (1992) Control of muscle tone in the human colon. Gut 33:541–546

    Google Scholar 

  122. Steadman CJ, Phillips SF, Camilleri M, Haddad A, Hanson R (1991) Variation of muscle tone in the human colon. Gastroenterology 101:373–381

    Google Scholar 

  123. Everhart JE, Go VLW, Johannes RS, et al. (1989) A longitudinal survey of self-reported bowel habits in the United States. Gastroenterology 34:1153–1162

    Google Scholar 

  124. Altman DF (1989) The effect of age on gastrointestinal function. In: Sleisenger MH, Fordtran JS (eds) Gastrointestinal disease, 4th edn. WB Saunders Company, Philadelphia, pp 162–169

    Google Scholar 

  125. Riddick C, Trinick T (1988) Gastrointestinal disturbances in marathon runners. Br J Sports Med 22:71–74

    Google Scholar 

  126. Cordain L, Latin RW, Behnke JJ (1986) The effects of an aerobic running program on bowel transit time. J Sports Med 26:101–104

    Google Scholar 

  127. Oettle GJ (1991) Effect of moderate exercise on bowel habit. Gut 32:941–944

    Google Scholar 

  128. Koffler KH, Menker A, Redmond RA, Whitehead WE, Pratley RE, Hurley BF (1992) Strength training accelerates gastrointestinal transit in middle-aged and older men. Med Sci Sports Exerc 24:415–419

    Google Scholar 

  129. Bingham SA, Cummings JH (1987) The effect of exercise on large intestinal function. Gastroenterology 92:A1317

    Google Scholar 

  130. Sutherland WHF, Nye ER, Boulter CP, Shelling A (1988) Physical training plasma lipoproteins and faecal steroid excretion in sedentary men. Clin Physiol 8:445–452

    Google Scholar 

  131. Dapoigny M, Sarna SK (1991) Effects of physical exercise on colonic motor activity. Am J Physiol 260:G646-G652

    Google Scholar 

  132. Cheskin LJ, Crowell MD, Kamal N, Rosen B, Schuster MM, Whitehead WE (1992) The effects of acute exercise on colonic motility. J Gastrointest Motility 4:173–177

    Google Scholar 

  133. Devroede G (1993) Radiopaque marker measurements of colorectal transit. In: Schuster MM (ed) Atlas of gastrointestinal motility in health and disease. William & Wilkins, Baltimore, pp 57–75

    Google Scholar 

  134. DiLorenzo C, Watanabe F, Flores AF, Hyman PE (1993) Age related changes in colon manometry in children. J Gastrointest Motility 5:187

    Google Scholar 

  135. Connell AM (1968) Mass action of the large bowel. In: Code CF (ed) Handbook of physiology, sect. 6: alimentary canal. Volume iv: motility. American Physiological Society, Washington DC, pp 2075–2091

    Google Scholar 

  136. Whiteway JE, Morson BC (1985) Elastosis in diverticular disease of the sigmoid colon. Gut 26:258–266

    Google Scholar 

  137. McDougal JN, Miller MS, Burks TF, Kreulen TL (1984) Agerelated changes in colonic function in rats. Am J Physiol 247:G542-G546

    Google Scholar 

  138. Butt WG, Wang M, Kaufmann ST, Ryan JP, Cohen S (1993) Age-related changes in rat colon mechanics. J Gastrointest Motility 5:121–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassotti, G., Germani, U. & Morelli, A. Human colonic motility: physiological aspects. Int J Colorect Dis 10, 173–180 (1995). https://doi.org/10.1007/BF00298543

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298543

Keywords

Navigation