Skip to main content
Log in

The contribution of solvent drag to the intestinal absorption of tritiated water and urea from the jejunum of the rat

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

  1. 1.

    Jejunal loops of anaesthetized rats were perfused with hypotonic, isotonic, and hypertonic buffered solutions containing tritiated water or 14C-labelled urea. The blood flow of the loop was maintained constant at an intermediate rate (0.8–0.9 ml min−1 g−1 wet tissue weight). The water net flux was determined by means of polyethylene glycol as nonabsorbable marker and amounted up to ±30 μl min−1 g−1 w. w.

  2. 2.

    A positive water net flux (directed towards the blood) increased the absorption rates (disappearance rate from the intestinal lumen, appearance rate in the intestinal venous blood) of tritiated water and urea by maximally 22 and 41%, a negative water net flux (directed towards the gut lumen) diminished it by 12 and 32%.

  3. 3.

    The data were analysed by means of a kinetic model with the water net flux as independent variable. The sieving coefficient ⧫=1-δ was 1.18±0.44 for tritiated water and 0.86±0.11 for urea at pH 6.2. The water net flux influenced the absorption of solutes by interaction within the membranes (solvent drag in a restricted sense) and by changing the volume of blood flowing in the capillaries near the epithelium. This last effect is large for the absorption of the rapidly absorbable tritiated water, but small for the absorption of urea which is absorbed ten-times slower.

  4. 4.

    The water net flux in the intestine depended linearly on the osmotic pressure difference between lumen and blood. The hydraulic permeability was 146–180 ml2 min−1 g−1 osm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, B., Ussing, H. H.: Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta physiol. scand. 39, 228–239 (1957)

    Google Scholar 

  • Blickenstaff, D. D.: Change in the ability of the intestine to absorb isosmotic NaCl solution following distilled water instillation. Amer. J. Physiol. 179, 467–470 (1954)

    Google Scholar 

  • Dennis, C.: Injury to the ileal mucosa by contact with distilled water. Amer. J. Physiol. 129, 171–175 (1940)

    Google Scholar 

  • Draper, N. R., Smith, H.: Applied regression analysis, 2nd ed. New York-London-Sidney: John Wiley and Sons, Inc. 1967

    Google Scholar 

  • Fisher, R. B.: The absorption of water and of some small solute molecules from the isolated small intestine of the rat. J. Physiol. (Lond.) 130, 655–664 (1955)

    Google Scholar 

  • Fordtran, J. S., Levitan, R., Bikerman, V., Burrows, B. A., Ingelfinger, F. J.: The kinetics of water absorption in the human intestine. Trans. Ass. Amer. Phycns 74, 195–206 (1961)

    Google Scholar 

  • Fordtran, J. S., Rector, F. C., Jr., Carter, N. W.: The mechanisms of sodium absorption in the human small intestine. J. clin. Invest. 47, 884–900 (1968)

    Google Scholar 

  • Fordtran, J. S., Rector, F. C., Jr., Ewton, M. F., Soter, N., Kinney, J.: Permeability characteristics of the human small intestine. J. clin. Invest. 44, 1935–1944 (1965)

    Google Scholar 

  • Forth, W., Furukawa, E., Leopold, G., Rummel, W.: Vergleichende Untersuchungen über die Resorption 3H-markierter Herzglykoside. In: Radioisotope in Pharmakokinetik und klinischer Biochemie, S. 123–128. G. Hoffmann u. H.-A. Ladner, Hrsg. Stuttgart-New York: Schattauer 1970

    Google Scholar 

  • Geigy: Documenta Geigy: Wissenschaftliche Tabellen, 7. Aufl. Basel: J. R. Geigy 1968

    Google Scholar 

  • Goldstein, D. A., Solomon, A. K.: Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. gen. Physiol. 44, 1–17 (1960)

    Google Scholar 

  • Hakim, A. A., Lifson, N.: Urea transport across dog intestinal mucosa in vitro. Amer. J. Physiol. 206, 1315–1310 (1964)

    Google Scholar 

  • Herzer, R., Haberich, F. J.: Enterale Aufnahme und renale Ausscheidung von tritiummarkiertem Wasser bei wachen Ratten. Pflügers Arch. ges. Physiol. 292, 277–287 (1966)

    Google Scholar 

  • Hindle, W., Code, C. F.: Some differences between duodenal and ileal sorption. Amer. J. Physiol. 203, 215–220 (1962).

    Google Scholar 

  • Hyden, S.: A turbidimetric method for the determination of higher polyethylene glycols in biological materials. K. Lantbr. Högsk. Ann. 22, 139–145 (1955)

    Google Scholar 

  • Kedem, O., Katchalsky, A.: A physical interpretation of the phenomenological coefficients of membrane permeability. J. gen. Physiol. 45, 143–179 (1961)

    Google Scholar 

  • Lee, P. R., Code, C. F., Scholer, J. F.: The influence of varying concentrations of sodium chloride on the rate of absorption of water from the stomach and small bowel of human beings. Gastroenterology 29, 1008–1015 (1955)

    Google Scholar 

  • Levitt, D. G., Hakim, A. A., Lifson, N.: Evaluation of components of transport of sugars by dog jejunum in vivo. Amer. J. Physiol. 217, 777–783 (1969)

    Google Scholar 

  • Lifson, N., Gruman, L. M., Levitt, D. G.: Diffusive-convective models for intestinal absorption of D2O. Amer. J. Physiol. 215, 444–454 (1968)

    Google Scholar 

  • Lifson, N., Hakim, A. A.: Simple diffusive-convective model for intestinal absorption of a nonelectrolyte (urea). Amer. J. Physiol. 211, 1137–1146 (1966)

    Google Scholar 

  • Lindemann, B., Solomon, A. K.: Permeability of luminal surface of intestinal mucosal cells. J. gen. Physiol. 45, 801–810 (1962)

    Google Scholar 

  • Magee, H. E., Reid, E.: The absorption of glucose from the alimentary canal. J. Physiol. (Lond.) 73, 163–183 (1931)

    Google Scholar 

  • Ochsenfahrt, H.: The mucosal-serosal transfer of drugs in the rat jejunum with and without blood flow. Naunyn-Schmiedebergs Arch. Pharmak. 270, R 102 (1971)

    Google Scholar 

  • Ochsenfahrt, H., Winne, D.: Der Einfluß der Durchblutung auf die Resorption von Arzneimitteln aus dem Jejunum der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. 264, 55–75 (1969)

    Google Scholar 

  • Ochsenfahrt, H., Winne, D.: Der Einfluß des Wassernettofluxes auf die Resorption von Arzneimitteln. Naunyn-Schmiedebergs Arch. Pharmak. 266, 414–415 (1970)

    Google Scholar 

  • Ochsenfahrt, H., Winne, D.: The contribution of blood flow changes to solvent drag phenomenon. Life Sci. 11, Part 1 1105–1113 (1972a)

    Google Scholar 

  • Ochsenfahrt, H., Winne, D.: Solvent drag influence on the intestinal absorption of basic drugs. Life Sci. 11, Part 1, 1115–1122 (1972b)

    Google Scholar 

  • Shields, R.: The absorption and secretion of fluid and electrolytes by the obstructed bowel. Brit. J. Surg. 52, 774–779 (1965)

    Google Scholar 

  • Smyth, D. H., Wright, E. M.: Streaming potentials in the rat small intestine. J. Physiol. (Lond) 182, 591–602 (1966)

    Google Scholar 

  • Soergel, K. H., Whalen, G. E., Harris, J. A.: Passive movement of water and sodium across the human small intestinal mucosa. J. appl. Physiol. 24, 40–48 (1968)

    Google Scholar 

  • Staverman, A. J.: The theory of measurement of osmotic pressure. Rec. Trav. chim. Pay-Bas 70, 344–352 (1951)

    Google Scholar 

  • Ther, L., Winne, D.: Drug absorption. Ann. Rev. Pharmacol. 11, 57–70 (1971)

    Google Scholar 

  • Visscher, M. B., Fetcher, E. S., Jr., Carr, C. W., Gregor, H. P., Bushey, M. S., Barker, D. E.: Isotopic tracer studies on the movement of water and ions between intestinal lumen and blood. Amer. J. Physiol. 142, 550–575 (1944)

    Google Scholar 

  • Vogel, G. Becker, U., Ullrich, M.: The relevance of the osmolarity of the instillation fluid to the “effectiveness” and “toxicity” of drugs given by the intraduodenal route. Naunyn-Schmiedebergs Arch. Pharmacol 277, R 85 (1973)

    Google Scholar 

  • Wang, J. H., Robinson, C. V., Edelman, I. S.: Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with 2H, 3H and 18O as tracers. J. Amer. chem. Soc. 75, 466–470 (1953)

    Google Scholar 

  • Williams, A. W.: Experimental production of altered jejunal mucosa. J. Path. Bact. 85, 467–472 (1963)

    Google Scholar 

  • Winne, D.: Die Pharmakokinetik der Resorption bei Perfusion einer Darmschlinge mit variable Durchblutung. Naunyn-Schmiedebergs Arch. Pharmak. 268, 417–433 (1971)

    Google Scholar 

  • Winne, D.: The influence of blood flow and water net flux on the absorption of tritiated water from the jejunum of the rat. Naunyn-Schmiedeberg's Arch. Pharmacol. 272, 417–436 (1972)

    Google Scholar 

  • Winne, D., Remischovsky, J.: Der Einfluß der Durchblutung auf die Resorption von Harnstoff, Methanol und Äthanol aus dem Jejunum der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. 268, 392–416 (1971a)

    Google Scholar 

  • Winne, D., Remischovsky, J.: Der Einfluß der Durchblutung auf die Resorption von Polyalkoholen aus dem Jejunum der Ratte. Naunyn-Schmiedebergs Arch. Pharmak. 270, 22–40 (1971b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochsenfahrt, H., Winne, D. The contribution of solvent drag to the intestinal absorption of tritiated water and urea from the jejunum of the rat. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 133–152 (1973). https://doi.org/10.1007/BF00503979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503979

Key words

Navigation