Skip to main content
Log in

The intestinal epithelial cell: immunological aspects

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Summary

IECs likely play an important role in immunological defense mechanism. Apart from being a passive barrier against luminal bacteria, IECs secrete protective and microbiocidal products such as ITF, complement components and cryptdins into the lumen. Moreover, IECs produce secretory component that is essential for the transport of IgA from the lamina propria into the lumen. IECs also have regulatory functions. They express adhesion molecules important in the homing of T cells and other leukocytes, and likely modulate T cell functions in a paracrine way. Furthermore, IECs secrete cytokines, either constitutively or after bacterial challenge, and they express cytokine receptors. Lastly, IECs may play an important role as non-professional antigen-presenting cells by expressing classical MHC class I and class II and non-classical MHC class I molecules on the cell surface. This aspect is particularly intriguing in that IECs also express a FcR that may have a function in luminal antigen sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumberg RS, Stenson WF (1995) The immune system. In: Yamada T (ed) Textbook of gastroenterology. Lippincott, Philadelphia, pp 111–140

    Google Scholar 

  2. Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfenning KW, Landau SB, Blumberg RS (1991) Science 253: 1411

    Google Scholar 

  3. Blumberg RS, Yockey CE, Gross GG, Ebert EC, Balk SP (1993) Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple Vβ T cell receptor genes. J Immunol 150: 5144

    Google Scholar 

  4. Van Kerckhove C, Russel GJ, Deusch K, Reich K, Bhan AK, DerSimonian H, Brenner MB (1992) Oligoclonality of human intestinal intraepithelial T cells. J. Exp Med 175:57

    Google Scholar 

  5. Madara JL (1995) Epithelia: biologic principles of organization. In: Yamada T (ed) Textbook of gastroenterology. Lippincott, Philadelphia, pp 141–157

    Google Scholar 

  6. McKay DM, Perdue MH (1993) Intestinal epithelial function: the case for immunophysiological regulation. 1. Cells and mediators. Dig Dis Sci 38: 1377

    Google Scholar 

  7. McKay DM, Perdue MH (1993) Intestinal epithelial function: the case for immunophysiological regulation. 2. Implications for disease. Dig Dis Sci 38: 1735

    Google Scholar 

  8. Boismenu R, Havran WL (1994) Modulation of epithelial cell growth by intraepithelialγδ T cells. Science 266: 1253

    Google Scholar 

  9. Kaoutzani P Colgan SP, Cepek KL, Grant Burkhard P, Carlson S, Delp-Archer C, Brenner MB, Madara JL (1994) Reconstitution of cultured intestinal epithelial monolayers with a mucosal-derived T lymphocyte cell line. J Clin Invest 94: 788

    Google Scholar 

  10. Colgan SP, Resnick MB, Parkos CA, Delp-Archer C, McGuirk D, Bacarra AE, Weller PF, Madara JL (1994) IL-4 directly modulated function of a model human intestinal epithelium. J Immunol 153: 2122–2129

    Google Scholar 

  11. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272: 50

    Google Scholar 

  12. Ouellette AJ, Greco RM, James M, Frederick D, Naftilan J, Fallon JT (1989) Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol 108: 1687

    Google Scholar 

  13. Harwig SS, Eisenhauer PB, Chen NP, Lehrer RI (1995) Cryptdins: endogenous antibiotic peptides of small intestinal Panteh cells. Adv Exp Med Biol 371A: 251

    Google Scholar 

  14. London SD, Cebra JJ, Rubin DH (1989) Intraepithelial lymphocytes contain virus-specific, MHC-restricted cytotoxic cell precursors after gut mucosal immunization with reovirus serotype 1/Lang. Reg Immunol 2: 98

    Google Scholar 

  15. Allen, Bell A, Mantle M, Pearson JP (1982) The structure and physiology of gastrointestinal mucus. Adv Exp Med Biol 144: 115

    Google Scholar 

  16. Podolsky DK, Kindon H, Lynch-Devaney K, Dignass A, Babyatsky M (1995) Epithelium in inflammatory bowel disease: trefoil peptides at the interface. In: Tytgat GNJ, Bartelsman JFWM, Deventer SJH van (eds) Falk Symposium 85. Inflammatory bowel disease. Kluwer, Dordrecht, pp. 360–365

    Google Scholar 

  17. Andoh A, Fujiama Y, Bamba T, Hosoda S (1993) Differential cytokine regulation of complement C3, C4 and factor B synthesis in human intestinal epithelial cell line, Caco-2. J Immunol 151: 4239

    Google Scholar 

  18. Eisenhauer PB, Harwig SS, Lehrer RI (1992) Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun 60: 3556

    Google Scholar 

  19. Casanova JE (1996) Structure and function of the polymeric immunoglobulin receptor in epithelial cells. In: Kagnoff MF, Kiyono H (eds) Essentials of mucosal immunology. Academic Press, San Diego, pp. 151–166

    Google Scholar 

  20. Mestecky J, Lue C, Russell MW (1991) Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin North Am 20: 441

    Google Scholar 

  21. Youngman KR, Fiocchi C, Kaetzel CS (1994) Inhibition of IFN-gamma activity in supernatants from stimulated human intestinal mononuclear cells prevents up-regulation of the polymeric Ig receptor in an intestinal epithelial cell line. J Immunol 153: 675

    Google Scholar 

  22. Piskurich JF, France JA, Tamer CM, Willmer CA, Kaetzel CS, Kaetzel DM (1993) Interferon-gamma induces polymeric immunoglobulin receptor mRNA in human intestinal epithelial cells by a protein synthesis dependent mechanism. Mol Immunol 30: 413

    Google Scholar 

  23. McGee DW, Archer WK, Eldridge JH, Peppard JV, Mestecky J, McGhee JR (1991) Transforming growth factor-beta enhances secretory component and major histocompatibility complex class 1 antigen expression on rat IEC-6 intestinal epithelial cells. Cytokine 3: 543

    Google Scholar 

  24. Kvale D, Brandtzaeg P (1995) Constitutive and cytokine-induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 36: 737

    Google Scholar 

  25. Brandtzaeg P, Halstensen TS, Huitfeldt HS, Krajci P, Kvale D, Scott H, Thrane PS (1992) Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract. Ann NY Acad Sci 664: 157

    Google Scholar 

  26. Fujihashi K, Taguchi T, Aicher WK, McGhee JR, Bluestone JA, Eldridge JH, Kiyono H (1992) Immunoregulatory functions for murine intraepithelial lymphocytes:γδ T cell receptor-positive (TCR+) T cells abrogate oral tolerance, whileαβ TCR+ T cells provide B cell help. J Exp Med 175: 695

    Google Scholar 

  27. Cepek KL, Parker CM, Madara JL, Brenner MB (1993) Integrinα E β 7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol 150: 3459

    Google Scholar 

  28. Cepek KL, Shaw SK, Parker CM, Russel GJ, Morrow JS, Rimm DL, Brenner MB (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and an integrin,α E β 7. Nature 372: 190

    Google Scholar 

  29. Roberts AI, O'Connell SM, Ebert EC (1993) Intestinal intraepithelial lymphocytes bind to colon cancer cells by HML-1 and CD11a. Cancer Res 53: 1608

    Google Scholar 

  30. Sarnacki S, Begue B, Buc H, Le Deist F, Cerf-Bensussan N (1992) Enhancement of CD3-induced activation of human intestinal intraepithelial lymphocytes by stimulation of theβ 7-containing integrin defined by HML-1 monoclonal antibody. Eur J Immunol 22: 2887

    Google Scholar 

  31. Dogan A, Wang ZD, Spencer J (1995) E-cadherin expression in intestinal epithelium. J Clin Pathol 48: 143

    Google Scholar 

  32. Peifer M (1993) Cancer, catenins, and cuticle pattern: a complex connection. Science 262: 1667

    Google Scholar 

  33. Rubinfeld B, Souza B, Albert I, Müller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P (1993) Association of the APC gene product withβ-catenin. Science 262: 1731

    Google Scholar 

  34. Su L-K, Vogelstein B, Kinzler KW (1993) Association of the APC tumor suppressor protein with catenins. Science 262: 1734

    Google Scholar 

  35. Kvale D, Krajci P, Brandtzaeg P (1992) Expression and regulation of adhesion molecules ICAMA (CD54) and LFA-3 (CD58) in human intestinal epithelial cell lines. Scand J Immunol 35: 669

    Google Scholar 

  36. Parkos CA, Colgan SP, Diamond MS, Nusrat A, Liang TW, Springer TA, Madara JL (1996) Expression and polarization of intracellular adhesion molecule-1 on human intestinal epithelia: consequences for CDllb/CD18-mediated interactions with neutrophils. Mol Med 2: 489

    Google Scholar 

  37. Hoang P, Crotty B, Dalton HR, Jewell DP (1992) Epithelial cells bearing class II molecules stimulate allogeneic human colonic intraepithelial lymphocytes. Gut 33: 1089

    Google Scholar 

  38. Mayer L, Shlien R (1987) Evidence for function of la molecules on gut epithelial cells in man. J Exp Med 166: 1471

    Google Scholar 

  39. Li Y, Yio XY, Mayer L (1995) Human intestinal epithelial cell-induced CD8+ T cell activation is mediated through CD8 and the activation of CD8-associated p561ck. J Exp Med 182: 1079

    Google Scholar 

  40. Liang Q, Schürmann G, Betzler M, Meuer SC (1991) Activation and signaling status of human lamina propria T lymphocytes. Gastroenterology 101: 1529

    Google Scholar 

  41. Pirzer UC, Schürmann G, Post S, Betzler M, Meuer SC (1990) Differential responsiveness to CD3-Ti vs. CD2-dependent activation of human intestinal T lymphocytes. Eur J Immunol 20: 2339

    Google Scholar 

  42. Qiao L, Schürmann G, Autschbach F, Wallich R, Meuer SC (1993) Human intestinal mucosa alters T-cell reactivities. Gastroenterology 105: 814

    Google Scholar 

  43. Ebert EC, Roberts AI, Brolin RE, Nagase H (1988) The action and physical features of an immunosuppresive factor produced by colon cancer cells. In: McDermott RP (ed) Inflammatory bowel disease: current status and future approach. Elsevier, Amsterdam, pp. 231–235

    Google Scholar 

  44. Ebert EC, Roberts AI, Devereux D, Nagase H (1990) Selective immunosuppressive action of a factor produced by colon cancer cells. Cancer Res 50: 6158

    Google Scholar 

  45. Christ AD, Colgan SP, Probert CSJ, Balk SP, Blumberg RS (1996) CD3-mediated proliferation of human lymphocytes is modulated by soluble factor(s) from a human intstinal epithelial cell (IEC) line. Gastroenterology 110: A883

    Google Scholar 

  46. Llana T, Bell RG (1993) Characterization of an inhibitory factor derived from epithelial cells of the small intestine. Reg Immunol 5: 18

    Google Scholar 

  47. Mayrhofer G (1995) Absorption and presentation of antigens by epithelial cells of the small intestine: hypotheses and predictions relating to the pathogenesis of coeliac disease. Immunol Cell Biol 73: 433

    Google Scholar 

  48. Eckmann L, Jung HC, Schurer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF (1993) Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 105: 1689

    Google Scholar 

  49. Schuerer-Maly CC, Eckmann L, Kagnoff MF, Falco MT, Maly FE (1994) Colonic epithelial cell lines as a source of interleukin-8: stimulation by inflammatory cytokines and bacterial lipopolysaccharide. Immunology 81: 85

    Google Scholar 

  50. Eckmann L, Kagnoff, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61: 4569

    Google Scholar 

  51. Fierer J, Eckmann L, Kagnoff M (1993) IL-8 secreted by epithelial cells invaded by bacteria. Infect Agents Dis 2: 255

    Google Scholar 

  52. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF (1995) A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95: 55

    Google Scholar 

  53. Watanabe M, Ueno Y, Yajima T, Iwao Y, Tsuchiya M, Ishikawa H, Aiso S, Hibi T, Ishii H (1995) Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 95: 2945

    Google Scholar 

  54. Panja A, Siden E, Mayer L (1995) Synthesis and regulation of accessory/proinflammatory cytokines by intestinal epithelial cells. Clin Exp Immunol 100: 298

    Google Scholar 

  55. McGee DW, Beagley KW, Aicher WK, McGhee JR (1992) Transforming growth factor-beta enhances interleukin-6 secretion by intestinal epithelial cells. Immunology 77: 7

    Google Scholar 

  56. Meyer TA, Noguchi Y, Ogle CK, Tiao G, Wang JJ, Fischer JE, Hasselgreen PO (1994) Endotoxin stimulates interleukin-6 production in intestinal epithelial cells. A synergistic effect with prostaglandin E2. Arch Surg 129: 1290

    Google Scholar 

  57. McGee DW, Elson CO, McGhee JR (1993) Enhancing effect of cholera toxin on interleukin-6 secretion by IEC-6 intestinal epithelial cells: mode of action and augmenting effect of inflammatory cytokines. Infect Immun 61: 4637

    Google Scholar 

  58. Anzano MA, Rieman D, Prichen W, Brwen-Pope DF, Greig R (1989) Growth factor production by human colon carcinoma cell lines. Cancer Res 49: 2898

    Google Scholar 

  59. Koyama S, Podolsky DK (1989) Differential expression of transforming growth factors α andβ in rat intestinal epithelial cells. J Clin Invest 83: 1768

    Google Scholar 

  60. Coffey RJ, Goustin AS, Sonderquist AM, Shipley GD, Wolfshohl J, Carpenter G, Moses HL (1987) Transforming growth factor a and 3 expression in human colon cancer cell lines; implications for an autocrine model. Cancer Res 47: 4590

    Google Scholar 

  61. Reinecker HC, Loh EY, Ringler DJ, Mehta A, Rombeau JL, MacDermott RP (1995) Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease. Gastroenterology 108: 40

    Google Scholar 

  62. Kim PH, Kagnoff MF (1990) Transforming growth factorβ1 increases IgA isotype switching at the clonal level. J Immunol 145: 3773

    Google Scholar 

  63. McCormick BA, Hofman PM, Kim J, Carnes DK, Miller SI, Madara JL (1995) Surface attachement ofSalomella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol 131: 1599

    Google Scholar 

  64. Eckmann L, Kagnoff MF, Fierer J (1995) Intestinal epithelial cells as watchdogs for the natural immune system. Trends Microbiol 3: 118

    Google Scholar 

  65. Reinecker HC, Podolsky DK (1995) Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proc Nat] Acad Sci USA 92: 8353

    Google Scholar 

  66. Reinecker HC, MacDermott RP, Mirau S, Dignass A, Podolsky K (1996) Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111: 1706

    Google Scholar 

  67. Stevens AC, Matthews J, Andres P, Baffis V, Zheng XX, Zhae D-W, Smith J, Strom TB, Maslinski W (1997) Imerleukin 15 signals T84 colonic epithelial cells in the absence of the interleukin 2 receptorβ chain. Am J Physiol (in press)

  68. Ciacci C, Mabida YR, Dignass A, Koizumi M, Podolsky DK (1993) Functional interleukin-2 receptors on intestinal epithelial cells. J Clin Invest 92: 527

    Google Scholar 

  69. Sutherland DB, Varilek GW, Neil GA (1994) Identification and characterization of the rat intestinal epithelial cell (IEC-18) interleukin-1 receptor. Am J Physiol 266: C1198

    Google Scholar 

  70. McGee DW, Vitkus SJ, Lee P (1996) The effect of cytokine stimulation on IL-1 receptor mRNA expression by intestinal epithelial cells. Cell Immunol 168: 276

    Google Scholar 

  71. Hata Y, Ota S, Nagata T, Uehara Y, Terano A, Sugimoto T (1993) Primary colonic epithelial cell culture of the rabbit producing prostaglandins. Prostaglandins 45: 129

    Google Scholar 

  72. LeDuc LE, Brown L, Vidrich A (1994) Bradykinin and FMLP stimulate prostanoid production by adult rabbit colonocytes in culture. Am J Physiol 267:G778

    Google Scholar 

  73. Gilbert RS, Reddy ST, Targan S, Herschman HR (1994) TGFβ 1 augments expression of the TIS 10/prostaglandin synthase-2 gene in intestinal epithelial cells. Cell Mol Biol Res 40: 653

    Google Scholar 

  74. Barrera S, Lai J, Fiocchi C, Roche JK (1996) Regulation by prostaglandin E2 of interleukin release by T lymphocytes in mucosa. J Cell Physiol 166: 130

    Google Scholar 

  75. Mayrhofer G (1995) Absorption and presentation of antigens by epithelial cells of the small intestine: hypothesis and predictions relating to the pathogenesis of coeliac disease. Immunol Cell Biol 73: 433

    Google Scholar 

  76. Kaiserlian D (1991) Murine epithelial cells express la molecules antigenically distinct from those of conventional antigen-presenting cells. Immunol Res 10: 360

    Google Scholar 

  77. Kaiserlian D, Vidal K, Revillard JP (1989) Murine enterocytes can present soluble antigen to specific class II restricted CD4+ T cells. Ent J Immunol 19: 1513

    Google Scholar 

  78. Olivier M, Berthon P, Salmon H (1994) Localisation immunohistochimique dans l'intestine de port des composantes cellulaires et humorales de la résponse immunitaire. Vet Res 25: 57

    Google Scholar 

  79. Cerf-Bensussan N, Quaroni A, Kurnick JT, Bhan AK (1984) Intraepithelial lymphocytes modulate la expression by intestinal epithelial cells. J Immunol 132: 2244

    Google Scholar 

  80. Lowes JR, Radwan P, Proddle JD, Jewell DP (1992) Characterisation and quantification of mucosal cytokine that induces epithelial histocompatibility locus antigen-DR expression in inflammatory bowel disease. Gut 33: 315

    Google Scholar 

  81. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP (1991) Expression of a nonpolymorphic MHC class I-like molecule, CDId, by human intestinal epithelial cells. J Immunol 147: 2518

    Google Scholar 

  82. Canchis PW, Bhan AK, Landau SB, Yang L, Balk SP, Blumberg RS (1993) Tissue distribution of the non-polymorphic major histocompatibility complex class I-like molecule, CDld. Immunology 80: 561

    Google Scholar 

  83. Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class 1 genes. Proc Natl Acad Sci USA 91: 6259

    Google Scholar 

  84. Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, Terhorst C (1990) Expression of murine CDl on gastrointestinal epithelium. Science 250: 679

    Google Scholar 

  85. Hershberg R, Eghtesady P, Brorson K, Modlin R, Kronenberg M (1990) Expression of the thymus leukemia antigen (TL) on intestinal epithelial cells and intestinal epithelial lymphocytes. FASEB J 4: A1864

    Google Scholar 

  86. Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Murray AM, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO, Kiyono H (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 154: 5611

    Google Scholar 

  87. Li XC, Almawi W, Jevnikar A, Tucker J, Zhong R, Grant D (1995) Allogeneic lymphocyte proliferation stimulated by small intestine-derived epithelial cells. Transplantation 60: 82

    Google Scholar 

  88. Brandeis JM, Sayegh MH, Gallon L, Blumberg RS, Carpenter CB (1994) Rat intestinal epithelial cells present major histocompatibility complex allopeptides to primed T cells. Gastroenterology 107: 1537

    Google Scholar 

  89. Bland PW, Warren LG (1986) Antigen presentation by epithelial cells of the rat small intestine. Kinetics, antigen specificity and blocking by anti-la antisera. Immunology 58: 1

    Google Scholar 

  90. Blumberg RS, Gerdes D, Chott A, Porcelli SA, Balk SP (1995) Structure and function of the CD1 family of MHC-like cell surface proteins. Immunol Rev 147: 5

    Google Scholar 

  91. Colgan SP, Morales VM, Madara JL, Polischuk JE, Balk SP, Blumberg RS (1996) IFN-γ modulates CDId surface expression on intestinal epithelia. Am J Physicl 271: C276

    Google Scholar 

  92. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, allan CH, Landau SB, Trier IS, Balk SP (1991) Expression of a nonpolymorphic MHC class I-like molecule, CDld, by human intestinal epithelial cells. J Immunol 147: 2518

    Google Scholar 

  93. Balk SP, Burke S, Polischuk JE, Frantz ME, Yang L, Porcelli S, Colgan SP, Blumberg RS (1994) Beta 2-microglobulin-independent MHC class lb molecule expressed by human intestinal epithelium. Science 265: 259

    Google Scholar 

  94. Brutkiewicz RR, Bennink JR, Yewdell JW, Bendelac A (1995) TAP-independentβ2-microglobulin-dependent surface expression of functional mouse CD 1.1. J Exp Med 182: 1913

    Google Scholar 

  95. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR (1995) CDI recognition by mouse NKl+ T lymphocytes. Science 268:863

    Google Scholar 

  96. Balk SP, Polischuk JE, Probert C, Stevens C, Ebert E, She J, Terhorst C, Blumberg RS (1995) Composition of TCR-CD3 complex in human intestinal intraepithelial lymphocytes: lack of FcεRI-γ chain. Int Immunol 7: 1237

    Google Scholar 

  97. Taguchi T, McGhee JR, Coffman RL, Beagley KW, Eldridge JH, Takatsu K, Kiyono H (1990) Analysis of Thl and Th2 cells in murine gut-associated tissues. Frequencies of CD4+ and CD8+ T cells that secrete IFNγ and 1L-5. J Immunol 145: 68

    Google Scholar 

  98. Balk SP, Ebert EC, Blumenthal RL, McDermott FV, Wucherpfennig KW, Landau SB, Blumberg RS (1991) Oligoclonal expansion and CDI recognition by human intestinal intraepithelial lymphocytes. Science 253: 1411

    Google Scholar 

  99. Panja A, Barone A, Mayer L (1994) Stimulation of lamina propria lymphocytes by intestinal epithelial cells: evidence for recognition of nonclassical restriction elements. J Exp Med 179: 943

    Google Scholar 

  100. Panja A, Blumberg RS, Balk SP, Mayer L (1993) CDld is involved in T cell-intestinal epithelial cell interaction. J Exp Med 178: 1115

    Google Scholar 

  101. Bendelac A (1995) CDI: presenting unusual antigens to unusual T lymphocytes. Science 269: 185

    Google Scholar 

  102. Castano AR, Tangri S, Miller JEW, Holcombe HR, Jackson MR, Huse WD, Kronenberg M, Peterson PA (1995) Peptide binding and presentation by mouse CD1. Science 269: 223

    Google Scholar 

  103. Umesaki Y, Setoyama H, Matsumoto S, Okada Y (1993) Expansion ofαβ T cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79: 32

    Google Scholar 

  104. Hussain LA, Kelly CG, Hecht EM, Fellowes R, Jourdan M, Lehner T (1991) The expression of Fe receptors for immunoglobulin G in human rectal epithelium. AIDS 5: 1089

    Google Scholar 

  105. Blumberg R, Story C, Wu Z, Christ A, Polischuk J, Israel E, Simister N (1996) Functional major histocompatibility complex (MHC) class I-related Fe receptor expression in human adult enterocytes and intestinal epithelial cell (IEC) lines. Gastroenterology 110: A868

    Google Scholar 

  106. Story CM, Mikulska JE, Simister NE (1994) A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J Exp Med 180: 2377

    Google Scholar 

  107. Kelsall BL, Strober W (1996) Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's patches. J Exp Med 183: 237

    Google Scholar 

  108. Maric I, Holt PG, Perdue MH, Bienenstock J (1996) Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 156: 1408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, A.D., Blumberg, R.S. The intestinal epithelial cell: immunological aspects. Springer Semin Immunopathol 18, 449–461 (1997). https://doi.org/10.1007/BF00824052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00824052

Keywords

Navigation