Skip to main content
Log in

Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Colchicine and methotrexate are commonly used in the treatment of gout and rheumatoid arthritis, respectively; however the mechanism(s) of action of these drugs remain(s) unknown. The objective of this study was to determine whether colchicine and methotrexate can modify the adhesion and emigration of leukocytes in postcapillary venules that are exposed to inflammatory mediators such as platelet-activating factor (PAF) and leukotriene B4 (LTB4). The rat mesentery was prepared for in vivo microscopic observation. Venules with internal diameters ranging between 25 and 35μn were selected for study. Erythrocyte velocity, vessel diameter, leukocyte rolling velocity, and the number of adherent (stationary for ≥30 sec) and emigrated leukocytes were measured during superfusion of the mesentery with bicarbonate-buffered saline (BBS). Repeat measurements of adhesive and hemodynamic parameters were obtained. between 50 and 60 min of superfusion with either 100 nM PAF or 20 nM LTB4 added to the superfusate. In some experiments, 1μM of either colchicine or methotrexate was added to the superfusate containing either PAF or LTB4. Both PAF and LTB4 caused increases in leukocyte adherence and emigration and reductions in leukocyte rolling velocity and venular shear rate. Colchicine effectively prevented all of the adhesive and hemodynamic alterations induced by both inflammatory mediators, while methotrexate was largely effective in preventing the responses elicited by PAF, but not LTB4. These results indicate that the therapeutic actions of colchicine and methotrexate may result from the ability of these agents to interfere with the adhesion and emigration of leukocytes from postcapillary venules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harris, E. D.. 1988. Pathogenesis of rheumatoid arthritis: A disorder associated with dys-functional immunoregulation.In Inflammation: Basic Principles and Clinical Correlates.J. I. Gallin, I. M. Goldstein, andR. Snyderman, editors. Raven Press, New York, 751–773.

    Google Scholar 

  2. Harlan, J. M., 1985. Leukocyte-endothelial cell interactions.Blood 65:513–525.

    Google Scholar 

  3. Tonnesen, M. G., 1989. Neutrophil-endothelial cell interactions: Mechanisms of neutrophil adherence to vascular endotheliumJ. Invest. Dermatol. 93:53s-58s.

    Google Scholar 

  4. Lipsky, P. E., 1991. Rheumatoid arthritis.In Principles of Internal Medicine. J. D. Wilson et al., editor. McGraw-Hill, New York, 1437–1443.

    Google Scholar 

  5. Caner, J. E. Z. 1965. Colchicine inhibition of chemotaxis.Arthritis Rheum. 8:752–757.

    Google Scholar 

  6. Cream, J. J., andD. S. Pole. 1980. The effect of methotrexate and hydroxyurea on neutrophil chemotaxis.Br. J. Dermatol. 102:557–563.

    Google Scholar 

  7. Ehrenfeld, M., M. Levy, M. BarEli, R. Galliby, andM. Eliakim. 1980. Effect of colchicine on polymorphonuclear leukocyte chemotaxis in human volunteers.Br. J. Clin. Pharmacol. 10:297.

    Google Scholar 

  8. Kerwar, S. S., andA. L. Oronsky. 1989. Methotrexate in rheumatoid arthritis: Studies with animal models.Adv. Enzyme Regul. 29:247–267.

    Google Scholar 

  9. Suarez, C. R., W. C. Pickett, D. H. Bell, D. K. McClintock, A. L. Oronsky, andS. S. Kerwar. 1987. Effect of low dose methotrexate on neutrophil chemotaxis induced by leukotriene B4 and complement C5a.J. Rheumatol. 14:9–11.

    Google Scholar 

  10. Ternowitz, T. 1989. Monocyte and neutrophil chemotaxis in psoriasis. Clinical and experimental studies.Dan. Med. Bull. 36:1–14.

    Google Scholar 

  11. Ternowitz, T., andT. Herlin. 1985. Neutrophil and monocyte chemotaxis in methotrexate treated psoriasis patients.Acta Derm. -Venereal. Suppl. 120:23–26.

    Google Scholar 

  12. Cronstein, B. N., M. A. Eberle, H. E. Gruber, andR. I. Levin. 1991. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.Proc. Natl. Acad. Sci. 88:2441–2445.

    Google Scholar 

  13. Granger, D. N., J. N. Benoit, M. Suzuki, andM. B. Grisham. 1989. Leukocyte adherence to venular endothelium during ischemia-reperfusion.Am. J. Physiol. 257:G683-G688.

    Google Scholar 

  14. Davis, M. J. 1987. Determination of volumetric flow in capillary tubes using an optical Doppler velocimeter.Microvasc. Res. 34:223–230.

    Google Scholar 

  15. House, S. D., andH. Lipowsky. 1987. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat.Microvasc. Res. 34:363–379.

    Google Scholar 

  16. Halprin, K. M., K. Fukui, andA. Ohkawara. 1971. Blood levels of methotrexate and the treatment of psoriasis.Arch Dermatol. 103:243–249.

    Google Scholar 

  17. Suzuki, M., W. Inauen, P. R. Kvietys, M. B. Grisham, C. Meininger, M. Schelling, H. J. Granger, andD. N. Granger. 1989. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interaction.Am. J. Physiol. 257:H1740-H1745.

    Google Scholar 

  18. Krishnan, A. 1975. Rapid flow cytometric analysis of mammalian cell cycle by propidium iodide staining.J. Cell. Biol. 66:188–192.

    Google Scholar 

  19. Jennings, S. R., P. A. Lippe, K. J. Pauza, P. G. Spear, L. Periera, andS. S. Tevethia. 1987. Kinetics of expression of herpes simplex virus type 1 specific glycoproteins species on the surface of infected murine, simian and human cells: A flow cytometric analysis.J. Virol. 61:104–112.

    Google Scholar 

  20. Wright, S. D., D. E. Rao, W. C. Van Voorhis, L. S. Craigmyle, K. Iida, M. A. Talle, E. F. Westberg, G. Goldstein, andS. C. Silverstein. 1983. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies.Proc. Natl. Acad. Sci. U.S.A. 80:5699–5704.

    Google Scholar 

  21. Ley, K. 1989. Granulocyte adhesion to microvascular and cultured endothelium.Stud. Biophys. 134:179–184.

    Google Scholar 

  22. Arnaout, M. A. 1990. Structure and function of the leukocyte adhesion molecules CD11/ CD18.Blood 75:1037–1050.

    Google Scholar 

  23. Lewis, M. S., R. E. Wfatley, P. Cain, T. M. McIntyre, S. M. Prescott, andG. A. Zimmerman. 1988. Hydrogen peroxide stimulates the synthesis of platelet activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion.J. Clin. Invest. 82:2045–2055.

    Google Scholar 

  24. Patel, K. D., G. A.Zimmerman, S. M.Prescott, R. P.McEver, and T. M.McIntyre. 1991. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils.J. Cell Biol. (in press).

  25. Del Maestro, R. F., M. Planker, andK. E. Arfors. 1982. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium, in vivo.Int. J. Microcirc.: Clin. Exp. 1:105–119.

    Google Scholar 

  26. Al Balla, S. 1990. The in vivo effect of nonsteroidal anti—inflammatory drugs, gold sodium thiomalate and methotrexate on neutrophil superoxide radical formation.Clin. Exp. Rheumatol. 8:41–45.

    Google Scholar 

  27. Schmidt, D., E. Morenz, andJ. Morenz. 1987. Effect of drugs on superoxide formation by neutrophilic granulocytes.Allerg. Immunol. 33:95–100.

    Google Scholar 

  28. Niwa, Y., T. Sakane, andY. Miyachi. 1984. Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates-in comparison with that of colchicine and various scavengers.Biochem. Pharmacol. 33:2355–2360.

    Google Scholar 

  29. Cronstein, B. N., R. I. Levin, J. Belanoof, G. Weissmann, andH. Hirschhorn. 1986. Adenosine: An endogenous inhibitor of neutrophil-mediated injury to endothelial cells.J. Clin. Invest. 78:760–770.

    Google Scholar 

  30. Grisham, M. B., L. A. Hernandez, andD. N. Granger. 1989. Adenosine inhibits ischemia-reperfusion induced leukocyte adherence and extravasation.Am. J. Physiol. 257:H1334-H1339.

    Google Scholar 

  31. Kubes, P., G. Ibbotson, J. Russell, J. L. Wallace, andD. N. Granger. 1990. Role of platelet activating factor in ischemia/reperfusion-induced leukocyte adherence.Am. J. Physiol. 259:G300-G305.

    Google Scholar 

  32. Perry, M. A., andD. N. Granger. 1991. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.J. Clin. Invest. 87:1798–1804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the National Institutes of Diabetes and Digestive and Kidney Diseases (DK 33594)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asako, H., Kubes, P., Baethge, B.A. et al. Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation 16, 45–56 (1992). https://doi.org/10.1007/BF00917514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917514

Keywords

Navigation