Skip to main content
Log in

Granulocyte turnover in the feline intestine

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the turnover rate of the extravascular pool of granulocytes in different regions of the feline gastrointestinal tract. Leukocyte emigration from the vasculature was prevented over a 48-h period by repeated intravenous injections of a monoclonal antibody (MAb IB4) directed against the leukocyte adhesion glycoprotein complex CD11/CD18. Tissue-associated myeloperoxidase (MPO) activity was used to monitor the total tissue granulocyte pool at 0.5, 12, 24, and 48 h after MAb IB4 administration. The mucosal layer of the duodenum, jejunum, ileum, and colon exhibited different kinetics of granulocyte clearance, with average life-spans (t1/2) ranging between 6.9 (colon) and 10.4 h (duodenum). Granulocyte clearance rates of 0.5 × 106 and 2.4 x 106 cells/h/g tissue were estimated (from measured values oft1/2 and tissue granulocyte pool) for the small bowel and colonie mucosae, respectively. The submucosal layer of the intestine exhibited a biphasic reduction in tissue MPO activity following immunoneutralization of CD11/CD18, with an initialt1/2 ≤ 0.5 h followed by at1/2 of 36–60 h. The initial rapid decline in tissue MPO suggests that a significant fraction of granulocytes in the submucosa is localized in a readily exchangeable pool (e.g., marginated cells within the vasculature). The results of this study indicate that the average life-span of resident granulocytes varies significantly between different regions of the gastrointestinal tract, with the intestinal mucosa exhibiting at1/2 comparable to that previously reported for circulating feline neutrophils (R 8 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Athens, J. W., A. M. Mauer, H. Ashenbrucker, G. E. Cartwright, andW. M. Wintrobe. 1959. Leukokinetic studies I. A method for labeling leukocytes with diisopropylfluorophosphate (DFP32).Blood 14:303–333.

    Google Scholar 

  2. Raab, S. O. 1964. Granulokinetics in normal dogs.Am. J. Physiol. 206:83–88.

    Google Scholar 

  3. Prasse, K. W., M. L. Kaeberle, andF. K. Ramsey. 1973. Blood neutrophilic granulocyte kinetics in cats.Am. J. Vet. Res. 34:1021–1025.

    Google Scholar 

  4. Alexanian, R., and D. M.Donohue. Neutrophilic granulocyte kinetics in normal man.J. Appl. Physiol. 20:803–808.

  5. Wright, S. D., P. E. Rao, W. C. VanVoorhis, L. S. Craigmyle, K. Iida, M. A. Talle, E. F. Westberg, G. Goldstein, andS. C. Silverstein. 1983. Identification of the C3Bi receptor of human monocytes and macrophages by using monoclonal antibodies.Proc. Natl. Acad. Sci. U.S.A. 80:5699–5703.

    Google Scholar 

  6. Oliver, M. G., R. D. Specian, M. A. Perry, andD. N. Granger. 1991. Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion.Inflammation 15:331–346.

    Google Scholar 

  7. Suzuki, M., W. Inauen, P. R. Kvietys, M. B. Grisham, C. Meininger, M. E. Schelling, H. J. Granger, andD. N. Granger. 1989. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions.Am. J. Physiol. 257:H1740-H1745.

    Google Scholar 

  8. Grisham, M. B., L. A. Hernandez, andD. N. Granger. 1986. Xanthine oxidase and neutrophil infiltration in intestinal ischemia.Am. J. Physiol. 251:G567-G574.

    Google Scholar 

  9. Grisham, M. B., J. N. Benoit, andD. N. Granger. 1990. Assessment of leukocyte involvement during ischemia and reperfusion of intestine.Methods Enzymol. 186:729–742.

    Google Scholar 

  10. `Suzuki, K., H. Ota, S. Sasagawa, T. Sakaton, andT. Fujikura. 1983. Assay method for myeloperoxidase in human polymorphonuclear leukocytes.Anal. Biochem. 132:345–352.

    Google Scholar 

  11. Grisham, M. B., andD. N. Granger. 1989. Free radicals: Reactive metabolites of oxygen as mediators of postischemic reperfusion injury.In Splanchnic Ischemia and Multiple Organ Failure. A. Marston, G. B. Bulkley, R. G. Fiddian-Green, and U. H. Haglund, editors. Edward Arnold, London. 135–144.

    Google Scholar 

  12. Ormrod, D. J., G. L. Harrison, andT. E. Miller. 1987. Inhibition of neutrophil myeloperoxidase activity by selected tissues.J. Pharmacol. Methods 18:137–142.

    Google Scholar 

  13. Schierwagen, C., A. C. Bylund-Fellenius, andC. Lundberg. 1990. Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity.J. Pharmacol. Methods 23:179–186.

    Google Scholar 

  14. Grisham, M. B., T. D. Engerson, J. M. McCord, andH. P. Jones. 1985. A comparative study of neutrophil purification and function.J. Immunol. Methods 82:315–320.

    Google Scholar 

  15. Winer, B. J. 1971. Statistical Principles in Experimental Design. McGraw-Hill, New York.

    Google Scholar 

  16. Presentey, B., Z. Jerushalmy, M. Ben-Bassat, andK. Perk. 1980. Genesis, ultrastructure and cytochemical study of the cat eosinophil.Anat. Record 196:119–127.

    Google Scholar 

  17. Harlan, J. M., P. D. Killen, F. M. Senegal, B. R. Schwartz, E. K. Yee, R. F. Taylor, P. G. Beatty, T. H. Price, and H. D. Ochs. 1985. The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro.Blood 66:167–178.

    Google Scholar 

  18. Pohlman, T. H., K. A. Stanness, P. G. Beatty, H. D. Ochs, andJ. M. Harlan. 1986. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin-1, and tumor necrosis factor increases neutrophil adherence by a CDw 18-dependent mechanism.J. Immunol. 136:45–48.

    Google Scholar 

  19. Kubes, P., M. Suzuki, andD. N. Granger. 1990. Platelet-activating factor-induced microvascular dysfunction: The role of adherent leukocytes.Am. J. Physiol. 258:G158-G163.

    Google Scholar 

  20. Kubes, P., K.-E. Arfors, andD. N. Granger. 1991. Platelet-activating factor-induced mucosal dysfunction: Role of oxidants and granulocytes.Am. J. Physiol. 260:G965-G971.

    Google Scholar 

  21. Craddock, C. G., S. Perry, L. E. Ventzke, J. S. Lawrence. 1960. Evaluation of marrow granulocytic reserves in normal and disease state.Blood 15:840–855.

    Google Scholar 

  22. Little, J. R., G. Brecher, T. R. Bradley, andS. Rose. 1962. Determination of lymphocyte turnover by continuous infusion of H3 thymidine.Blood 19:236–242.

    Google Scholar 

  23. Teir, H., T. Rytömaa, A. Cederberg, andK. Kiviniemi. 1963. Studies on the elimination of granulocytes in the intestinal tract in the rat.Acta Pathol. Microbiol. Scand. 59:311–324.

    Google Scholar 

  24. Kibbler, C. 1989. Enteric bacterial toxins: Their local effects and role in disease.In Splanchnic Ischemia and Multiple Organ Failure. A. Marston, G. B. BuUdey, R. G. Fiddian-Green, and U. H. Haglund, editors. Edward Arnold, London. 167–181.

    Google Scholar 

  25. Granger, D. N., andA. E. Taylor. 1980. Permeability of intestinal capillaries to endogenous macromolecules.Am. J. Physiol. 238:H457-H464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, H., Kubes, P., Grisham, M.B. et al. Granulocyte turnover in the feline intestine. Inflammation 16, 549–559 (1992). https://doi.org/10.1007/BF00918979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00918979

Keywords

Navigation