Skip to main content
Log in

The production of chromosome structural changes by radiation

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

This paper attempts an update and comment upon some of the topics of chromosome aberration formation which Lea raised in Chapter VI of his classic work ‘Actions of Radiations on Living Cells’24. Only the first nine sections of this chapter are covered, which deal primarily with the qualitative aspects of aberrations, their formation, classification and interrelationships. In commenting upon these topics, pertinent references are made to work with mammalian and human cells.

Increased knowledge of the importance of DNA as a fundamental target and the integral part it plays in the complex structure of the chromosome, coupled with cellular techniques not available to these earlier workers necessitate some revision and modification of early ideas. However, inspite of the enormous accumulation of data and ideas since the original work was published in 1946, the foundation that these early workers laid is still very solid. Surprisingly, we are still puzzled by many of the problems that perplexed them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender, M. A., Griggs, H. G., and Walker, P. L., Mechanisms of chromosomal aberration production. I. Aberration induction by ultraviolet light. Mutat. Res.20 (1973) 387–402.

    Article  CAS  PubMed  Google Scholar 

  2. Bender, M. A., Bedford, J. S. and Mitchell, J. B., Mechanisms of chromosomal aberration production. II. Aberrations induced by 5-bromodeoxyuridine and visible light. Mutat. Res.20 (1973) 403–416.

    Article  CAS  PubMed  Google Scholar 

  3. Bender, M. A., Griggs, H. G., and Bedford, J. S., Mechanisms of chromosomal aberration production. III. Chemicals and ionizing radiation. Mutat. Res.23 (1974) 197–212.

    Article  CAS  PubMed  Google Scholar 

  4. Brecher, S., Ultrastructural observations of X-ray induced chromatid gaps. Mutat. Res.42 (1977) 249–268.

    Article  CAS  PubMed  Google Scholar 

  5. Brewen, J. G., Olivieri, G., Luippold, H. E., and Pearson, F. G., Nonrandom rejoining in the formation of chromatid interchanges: Variations through the cell cycle and the effect of chromosome pairing. Mutat. Res.8 (1969) 401–408.

    Article  CAS  PubMed  Google Scholar 

  6. Brewen, J. G., and Peacock, W. J., The effect of tritiated thymidine on sister-chromatid exchange in a ring chromosome. Mutat. Res.7 (1969) 433–440.

    Article  CAS  PubMed  Google Scholar 

  7. Bryant, P. E., Enzymatic restriction of mammalian cell DNA using Pvu II and Bam H1: Evidence for the double strand break origin of chromosomal aberrations. Int J. Radiat. Biol.46 (1984) 57–65.

    CAS  Google Scholar 

  8. Carrano, A. V., and Heddle, J. A., The fate of chromosome aberrations. J. theor. Biol.38 (1973) 289–304.

    Article  CAS  PubMed  Google Scholar 

  9. Cawood, A. H., and Savage, J. R. K., A comparison of the use of bromodeoxyuridine and [3H] thymidine in studies of the cell cycle. Cell Tiss. Kinet.16 (1983) 51–57.

    CAS  Google Scholar 

  10. Chadwick, K. H., and Leenhouts, H. P., The Molecular Theory of Radiation Biology. Springer-Verlag, Berlin 1981.

    Book  Google Scholar 

  11. Conger, A. D., The fate of metaphase aberrations. Radiat. Bot.5 (1965) 81–96.

    Article  Google Scholar 

  12. Conger, A. D., Real chromatid deletions versus gaps. Mutat. Res.4 (1967) 449–459.

    Article  CAS  PubMed  Google Scholar 

  13. Conger, A. D., and Curtis, H. J., Anaphase chromosomal bridges as a criterion of effect. Abstract 223, 3rd international Congress of Radiation Research, Cortina 1966.

  14. Cornforth, M. N., and Bedford, J. S. X-ray induced breakage and rejoining of human interphase chromosomes. Science222 (1983) 1141–1143.

    Article  CAS  PubMed  Google Scholar 

  15. Darlington, C. D., and La Cour, L. F., Chromosome breakage and the nucleic acid cycle. J. Genet.46 (1945) 180–267.

    Article  Google Scholar 

  16. Dutrillaux, B., Couturier, J., Richer, C. L., and Viegas-Péquignot, E., Sequence of replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment. Chromosoma58 (1976) 51–61.

    Article  CAS  PubMed  Google Scholar 

  17. Evans, H. J., Chromosome aberrations induced by ionizing radiations. Int. Rev. Cytol.13 (1962) 221–321.

    Article  CAS  Google Scholar 

  18. Gaulden, M. E., Hypothesis: Some mutagens directly alter specific chromosomal proteins (DNA topoisomerase II and peripheral proteins) to produce chromosome stickiness, which causes chromosome aberrations. Mutagenesis2 (1987) 357–365.

    Article  CAS  PubMed  Google Scholar 

  19. Goodhead, D. T., Cellular effects of ultrasoft X-radiation, in: The Biological Basis of Radiotherapy, pp. 81–92. Eds G. G. Steel, G. E. Adams and M. Peckham. Elservier, Amsterdam 1983.

    Google Scholar 

  20. Heddle, J. A., and Scott, D., The rupture of radiation-induced anaphase bridges. Radiat. Bot.10 (1970) 11–17.

    Article  Google Scholar 

  21. Hittleman, W. N., and Rao, P. N.; Premature chromosome condensation: I. visualization of X-ray-induced chromosome damage in interphase cells. Mutat. Res.23 (1974) 251–258.

    Article  Google Scholar 

  22. Howard-Peebles, P. N., and Howell, W. M., Behaviour of chromosome cores at heritable fragile sites: 16q 22 and Xq 27. Cytogenet. Cell Genet.31 (1981) 115–119.

    Article  CAS  PubMed  Google Scholar 

  23. Kirby-Smith, J. S., and Craig, D. L., The induction of chromosome aberrations inTradescantia by ultraviolet radiation. Genetics42 (1957) 176–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lea. D. E., Actions of Radiations of Living cells. Cambridge University Press, 1st edn. 1946; 2nd edn. 1955.

  25. Olivieri, G., and Brewen, J. G., Evidence for nonrandom rejoining of chromatid breaks and its relation to the origin of sister chromatid exchanges. Mutat. Res.3 (1966) 237–248.

    Article  CAS  PubMed  Google Scholar 

  26. Perry, P. E., and Wolff, S., New Giemsa method for the differential staining of sister chromatids. Nature251 (1974) 156–158.

    Article  CAS  PubMed  Google Scholar 

  27. Quastler, H., The analysis of cell population kinetics, in: Cell Proliferation, pp. 18–34. Eds L. F. Lamerton and R. J. M. Fry. Blackwell, Oxford 1963.

    Google Scholar 

  28. Revell, S. H., The accurate estimation of chromatid breakage and its relevance to a new interpretation of chromatid aberrations induced by ionizing radiations. Proc. Roy. Soc. (Lond.), Ser. B150 (1959) 563–589.

    CAS  Google Scholar 

  29. Revell, S. H., The breakage-and-reunion theory and the exchange theory for chromosomal aberrations induced by ionizing radiations: A short history. Adv. Radiat. Biol.4 (1974) 367–416.

    Article  Google Scholar 

  30. Savage, J. R. K., Sites of radiation-induced chromosome exchanges. Curr. Top. Radiat. Res.6, (1970). 129–194.

    Google Scholar 

  31. Savage, J. R. K., Radiation-induced chromosomal aberrations in the plantTradescantia: Dose-response curves. I. Preliminary considerations. Radiat. Bot.15 (1975) 87–140.

    Article  CAS  Google Scholar 

  32. Savage, J. R. K., Annotation: Classification and relationships of induced chromosomal structural changes. J. med. Genet.13 (1976) 103–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savage, J. R. K., Annotation: Application of chromosome bandiing techniques to the study of primary chromosome structural changes. J. med. Genet.14 (1977) 362–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Savage, J. R. K., Induction and consequences of structural chromosome aberrations, in: The Biological Basis of Radiotherapy, pp. 93–103. Eds G. G. Steel, G. E. Adams and M. Peckham. Elsevier, Amsterdam 1983.

    Google Scholar 

  35. Savage, J. R. K., and Bhunya, S. P., The induction of chromosomal aberrations by X-irradiation during S-phase in cultured diploid Syrian hamster fibroblasts. Mutat. Res.73 (1980) 291–306.

    Article  CAS  PubMed  Google Scholar 

  36. Savage, J. R. K. and Papworth, D. G., The effect of variable G2 duration upon the interpretation of yield-time curves of radiation-induced chromatid aberrations. J. theor. Biol.38 (1973) 17–38.

    Article  CAS  PubMed  Google Scholar 

  37. Savage, J. R. K., and Papworth, D. G., Some problems of sampling for chromosomal aberrations from synchronous populations. J. theor. Biol54 (1975) 129–152.

    Article  CAS  PubMed  Google Scholar 

  38. Savage, J. R. K., and Papworth, D. G., Frequency and distribution studies of asymmetrical versus symmetrical aberrations. Mutat. Res.95 (1982) 7–18.

    Article  CAS  PubMed  Google Scholar 

  39. Savage, J. R. K., and Prasad, R., Cytological sub-division of the S-phase of human cells in asynchronous culture. J. med. Genet.21 (1984) 204–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Savage, J. R. K., Preston, R. J., and Neary, G. J., Chromatid aberrations indTradescantia bracteata and a further test of Revell's hypothesis. Mutat. Res.5 (1968) 47–56.

    Article  CAS  PubMed  Google Scholar 

  41. Sax, K., Types and frequencies of chromosomal aberrations induced by X-rays Cold Spr. Harb. Symp. quant. Biol.9 (1941) 93–103.

    Article  Google Scholar 

  42. Scheid, W., and Traut, H., Ultraviolet-microscopical studies on achromatic lesions (‘gaps’) induced by X-rays in the chromosomes ofVicia faba. Mutat. Res.10 (1970) 159–161.

    Article  Google Scholar 

  43. Scott, D., and Lyons, C. Y., Homogeneous sensitivity of human peripheral blood lymphocytes to radiation-induced chromosome damage. Nature278 (1979) 756–758.

    Article  CAS  PubMed  Google Scholar 

  44. Seabright, M., A rapid banding technique for human chromosomes. Lancet2 (1971) 971–972.

    Article  CAS  PubMed  Google Scholar 

  45. Sumner, A. T., Evans, H. J., and Buckland, R. A., New technique for distinguishing human chromosomes. Nature, New Biol.232 (1971) 31–32.

    Article  CAS  PubMed  Google Scholar 

  46. Sutherland, G. R., The fragile X chromosome. Int. Rev. Cytol.81 (1983) 107–143.

    Article  CAS  PubMed  Google Scholar 

  47. Swanson, C. P., A comparison of chromosomal aberrations induced by X-ray and ultraviolet radiations. Proc. natl Acad. Sci USA26 (1940) 366–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swanson, C. P., The effects of ultraviolet and X-ray treatment on the pollen tube chromosomes ofTradescantia. Genetics27 (1942) 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thoday, J. M., Sister-union isolocus breaks in irradiatedVicia faba: The target theory and physiological variation. Heredity6 (1953) 299–309.

    Google Scholar 

  50. Wigglesworth, D. J. and Savage, J. R. K., A comparison of the geometric configurations adopted by radiation-induced chromatid interchanges in animals and plants. Mutat. Res.44 (1977) 71–85.

    Article  CAS  PubMed  Google Scholar 

  51. Wolff, S., and Luippold, H. E., Inaccuracy of anaphase bridges as a measure of radiation-induced nuclear damage. Nature179 (1957) 208–209.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, J.R.K. The production of chromosome structural changes by radiation. Experientia 45, 52–59 (1989). https://doi.org/10.1007/BF01990452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01990452

Key words

Navigation