Skip to main content
Log in

N-acetyltransferases: Pharmacogenetics and clinical consequences of polymorphic drug metabolism

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Since the discovery of polymorphicN-acetylation of drugs nearly 40 years ago, great progress has been made in understanding the molecular genetics of acetylation as well as the clinical consequences of being a rapid or slow acetylator. Inborn errors (several different alleles) at the NAT2 locus are responsible for the traditional acetylator polymorphism. Studies have revealed variant alleles at the NAT1 locus as well. The consequences of pharmacogenetic variation in these enzymes include (i) altered kinetics of specific drug substrates; (ii) drug-drug interactions resulting from altered kinetics; (iii) idiosyncratic adverse drug reactions. The latter have been extensively investigated for the arylamine-containing sulfonamide antimicrobial drugs. Individual differences in multiple metabolic pathways can increase the likelihood of covalent binding of reactive metabolites of the drugs to cell macromolecules with resultant cytotoxicity and immune response to neoantigens. This can result clinically in an idiosyncratic hypersensitivity reaction, manifested by fever, skin rash, and variable toxicity to organs including liver, bone marrow, kidney, lung, heart, and thyroid. Slow acetylation by NAT2 is a risk factor for such reactions to sulfonamides. Given the incidence of these severe adverse drug reactions (much less than 1/1000), slow acetylation cannot be the sole mechanism of predisposition in the population. Differences in rates of production of hydroxylamine metabolites of the drugs by cytochrome P450 (CYP2C9), myeloperoxidase, and thyroid, roxidase, along with an inherited abnormality in detoxification of the hydroxylamines are critically important in determining individual differences in adverse reaction risk. Both NATs, particularly NAT1, also can further metabolize hydroxylamine metabolites toN-acetoxy derivatives. Intensive investigation of patients with these rare adverse reactions using a variety of tools fromin vitro cell toxicity assays through molecular genetic analysis will help elucidate mechanisms of predisposition and ultimately lead to diagnostic tools to characterize individual risk and prevent idiosyncratic drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. W. Weber.The Acetylator Genes and Drug Response, Oxford University Press, New York, 1987.

    Google Scholar 

  2. D. A. P. Evans.N-acetyltransferases.Pharmacol. Ther. 42:157–234 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. K. P. Vatsis, W. W. Weber, D. A. Bellet al.. Nomenclature forN-acetyltransferases.Pharmacogenetics 5:1–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. H. B. Hughes. Metabolism of isoniazid in man as related to the occurrence of peripheral neuritis.Am. Rev. Tuberculosis 70:266–273 (1954).

    CAS  Google Scholar 

  5. D. A. P. Evans, K. A. Manley, and V. A. McKusick. Genetic control of isoniazid metabolism in man.Br. Med. J. 2:485–491 (1960).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. M. Blum, D. M. Grant, O. W. McBride, M. Heim, and U. A. Meyer. Human arylamineN-acetyltransferase genes: Isolation, chromosomal localization and functional expression.DNA Cell Biol. 9:193–203 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. T. Deguchi, M. Mashimo, and T. Suzuki. Correlation between acetylator phenotypes and genotypes of polymorphic arylamineN-acetyltransferase in human liver.J. Biol. Chem. 265:12757–12760 (1990).

    CAS  PubMed  Google Scholar 

  8. S. Ohsako and T. Deguchi. Cloning and expression of cDNAs for polymorphic and monomorphic arylamineN-acetyltransferases from human liver.J. Biol. Chem. 265:4630–4634 (1990).

    CAS  PubMed  Google Scholar 

  9. M. Blum, A. Demierre, D. M. Grant, H. Heim, and U. A. Meyer. Molecular mechanism of slow acetylation of drugs and carcinogens in humans.Proc. Natl. Acad. Sci. U.S. 88:5237–5241 (1991).

    Article  CAS  Google Scholar 

  10. D. Hickman and E. Sim.N-acetyltransferase polymorphism: Comparison of phenotype and genotype in humans.Biochem. Pharmacol. 42:1007–1014 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. K. P. Vatsis, K. J. Martell, and W. W. Weber. Diverse point mutations in the human gene for polymorphicN-acetyltransferase.Proc. Natl. Acad. Sci. U.S. 88:6333–6337 (1991).

    Article  CAS  Google Scholar 

  12. D. M. Grant, B. K. Tang, and W. Kalow. A simple test for acetylator phenotype using caffeine.Br. J. Clin. Pharmacol. 17:459–464 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. D. Hein, R. Ferguson, M. Dollet al. Molecular genetics of human polymorphicN-acetyltransferase: Enzymatic analysis of 15 recombinant wild-type, mutant, and chimeric NAT2 allozymes.Hum. Mol. Genet. 3:729–734 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. D. M. Grant, K. Morike, M. Eichelbaum, and U. A. Meyer. Acetylation pharmacogenetics: The slow acetylator phenotype is caused by decreased or absent arylamineN-acetyltransferase in human liver.J. Clin. Invest. 85:968–972 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. D. M. Grant, M. Blum, M. Beer, and U. A. Meyer. Monomorphic and polymorphic human arylamineN-acetyltransferases: A comparison of liver isozymes and expressed products of two cloned genes.Mol. Pharmacol. 39:184–191 (1991).

    CAS  PubMed  Google Scholar 

  16. D. M. Grant, P. Vohra, Y. Avis, and A. Ima. Detection of a new polymorphism of humanN-acetyltransferase NAT1 usingp-aminosalicyclic acid as anin vivo probe.J. Basic Clin. Physiol. Pharmacol. 3:244 (1992).

    Google Scholar 

  17. K. P. Vatsis and W. W. Weber. Structural heterogeneity of caucasianN-acetyltransferase at the NAT1 gene locus.Arch. Biochem. Biophys. 310:71–76 (1993).

    Article  Google Scholar 

  18. N. Hughes and D. M. Grant. Cloning and expression of new mutant forms of humanN-acetyltransferase NAT1 with defective function.10th International Symposium on Microsomes and Drug Oxidations, Toronto, 1994, p. 278.

  19. B. L. Lee, D. Wong, N. L. Benowitz, and P. M. Sullam. Altered patterns of drug metabolism in patients with the acquired immunodeficiency syndrome.Clin. Pharmacol. Ther. 53:529–535 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. D. M. Grant, P. D. Josephy, H. L. Lord, and L. D. Morrison.Salmonella typhimurium strains expressing human arylamineN-acetyltransferases: Metabolic and mutagenic activation of aromatic amines.Cancer Res. 52:3961–3964 (1992).

    CAS  PubMed  Google Scholar 

  21. D. E. Drayer and M. M. Reidenberg. Clinical consequences of polymorphic acetylation of drugs.Clin. Pharmacol. Ther. 22:251–258 (1977).

    CAS  PubMed  Google Scholar 

  22. N. H. Shear, S. P. Spielberg, D. M. Grant, B. K. Tang, and W. Kalow. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity.Ann. Intern. Med. 105:179–184 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. M. J. Rieder, N. H. Shear, A. Kanee, B. K. Tang, W. Kalow, and S. P. Spielberg. Predominance of slow acetylator phenotype among patients with sulfonamide hypersensitivity reactions.Clin. Pharmacol. Ther. 49:13–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. N. H. Shear and S. P. Spielberg.In vitro evaluation of a toxic metabolite of sulfadiazine.Can. J. Physiol. Pharmacol. 63:1370–1372 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. A. E. Cribb and S. P. Spielberg. Hepatic microsomal metabolism of sulfamethoxazole to the hydroxylamine.Drug. Metab. Disp. 18:784–787 (1990).

    CAS  Google Scholar 

  26. A. E. Cribb, M. Miller, A. Tesoro, and S. P. Spielberg. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from man and dog.Mol. Pharmacol. 38:744–751 (1990).

    CAS  PubMed  Google Scholar 

  27. A. Gupta, M. M. Eggo, J. P. Uetrechtet al. Drug-induced hypothyroidism: The thyroid as a target organ in hypersensitivity reactions to anticonvulsants and sulfonamides.Clin. Pharmacol. Ther. 51:56–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. A. E. Cribb and S. P. Spielberg. Sulfamethoxazole is metabolized to the hydroxylamine in humans.Clin. Pharmacol. Ther. 51:522–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. A. E. Cribb, S. P. Spielberg, and G. P. Griffin.N4-Hydroxylation of sulfamethoxazole by cytochrome P450 of the CYP2C subfamily, and reduction of sulfamethoxazole in human and rat hepatic microsomes.Drug Metab. Disp. 23:406–414 (1995).

    CAS  Google Scholar 

  30. M. J. Rieder, J. P. Uetrecht, and S. P. Spielberg. Synthesis and toxicity of hydroxylamines of the sulfonamides.J. Pharmacol. Exp. Ther. 244:724–728 (1988).

    CAS  PubMed  Google Scholar 

  31. M. J. Rieder, J. P. Uetrecht, N. H. Shear, M. Cannon, M. Miller, and S. P. Spielberg. Diagnosis of sulfonamide hypersensitivity reactions byin vitro “re-challenge” with hydroxylamine metabolites.Ann. Intern. Med. 110:286–289 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. U. Giger, L. L. Werner, N. J. Millichamp, and N. T. Gorman. Sulfadiazine-induced allergy in six Doberman Pinschers.J. Am. Vet. Med. Assoc. 186:479–484 (1985).

    CAS  PubMed  Google Scholar 

  33. A. E. Cribb and S. P. Spielberg. Anin vitro investigation of predisposition to sulfonamide idiosyncratic toxicity in dogs.Vet. Res. Commun. 14:241–252 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. A. E. Cribb, M. A. Miller, J. S. Leeder, and S. P. Spielberg. Reactions of the nitroso and hydroxylamine metabolites of sulfamethoxazole with reduced glutathione: Implications for idiosyncratic toxicity.Drug Metab. Disp. 19:900–906 (1991).

    CAS  Google Scholar 

  35. R. Riley, A. E. Cribb, and S. P. Spielberg. Glutathione-S-transferase mu is not a marker for sulfonamide hypersensitivity reactions.Biochem. Pharmacol. 42:696–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. R. Buhl, H. A. Jaffe, K. J. Holroyd,et al. Systemic glutathione deficiency in symptomfree HIV seropositive individuals.Lancet 2:1294–1298 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. F. M. Gordon, G. L. Simon, C. B. Wofsy, and J. Mills. Adverse reactions to trimethoprim-sulfamethoxazole in patients with the acquired immunodeficiency syndrome.Ann. Intern. Med. 100:495–499 (1984).

    Article  Google Scholar 

  38. I. Medina, J. Mills, G. Leounget al. Oral therapy for pneunocystis carinii pneumonia in the acquired immunodeficiency syndrome. A controlled trial of trimethoprim-sulfa-methoxazole vs. trimethoprim-dapsone.New Engl. J. Med. 323:776–782 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. H. Nakamura, J. Uetrecht, D. M. Grant, and S. P. Spielberg. Metabolism and toxicity ofN-acetoxy-sulfamethoxazole.J. Pharmacol. Exp. Ther. 274:1099–1104 (1995).

    CAS  PubMed  Google Scholar 

  40. A. E. Cribb, D. M. Grant, and S. P. Spielberg. Expression of the monomorphic arylamineN-acetyltransferase (NAT1) in human leukocytes.J. Pharmacol. Exp. Ther. 259:1241–1246 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spielberg, S.P. N-acetyltransferases: Pharmacogenetics and clinical consequences of polymorphic drug metabolism. Journal of Pharmacokinetics and Biopharmaceutics 24, 509–519 (1996). https://doi.org/10.1007/BF02353477

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353477

Key Words

Navigation