Skip to main content
Log in

Aminoglycoside suppression at UAG, UAA and UGA codons inEscherichia coli and human tissue culture cells

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have compared the suppression of nonsense mutations by aminoglycoside antibiotics inEscherichia coli and in human 293 cells. Six nonsense alleles of the chloramphenicol acetyl transferase (cat) gene, in the vector pRSVcat, were suppressed by growth in G418 and paromomycin. Readthrough at UAG, UAA and UGA codons was monitored with enzyme assays for chloramphenicol acetyl transferase (CAT), in stably transformed bacteria and during transient expression from the same plasmid in human 293 tissue culture cells. We have found significant differences in the degree of suppression amongst three UAG codons and two UAA codons in different mRNA contexts. However, the pattern of these effects are not the same in the two organisms. Our data suggest that context effects of nonsense suppression may operate under different rules inE. coli and human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bossi L (1983) Context effects. Translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol 164:73–87

    Article  PubMed  CAS  Google Scholar 

  • Bouadloun F, Donner D, Kurland CG (1983) Codon specific missense errors in vivo. EMBO J 2:1351–1356

    PubMed  CAS  Google Scholar 

  • Bradford MA (1976) A rapid and sensitive method for the quantitation of microgram quantitation of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JH, Stevens A, Sidhu J (1987) Aminoglycoside antibiotic treatment of human fibroblasts: intracellular accumulation, molecular changes and the loss of ribosomal accuracy. Eur J Cell Biol 43:141–147

    PubMed  CAS  Google Scholar 

  • Burke JF, Mogg AE (1985a) Construction of a vector, pRSVcat amb38, for the rapid and sensitive assay of amber suppression in human and other mammalian cells. Nucleic Acids Res 13:1317–1326

    PubMed  CAS  Google Scholar 

  • Burke JF, Mogg AE (1985b) Suppression of a nonsense mutation in mammalian cellsin vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res 13:6265–6272

    PubMed  CAS  Google Scholar 

  • Capone JP, Sharp PA, RajBhandary UL (1985) Amber ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J 4:213–221

    PubMed  CAS  Google Scholar 

  • Capone JP, Sedivy JM, Sharp PA, RajBhandary UL (1986) Introduction of UAG, UAA and UGA nonsense mutations at a specific site in theEscherichia coli chloramphenicol acetyl transferase gene: use in measurement of amber, ochre and opal suppression in mammalian cells. Mol Cell Biol 6:3059–3067

    PubMed  CAS  Google Scholar 

  • Capone JP, Sharp PA, RajBhandary UK (1985) Amber ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J 4:213–221

    PubMed  CAS  Google Scholar 

  • Capone JP, Sedivy JM, Sharp PA, RajBhandary UL (1986) Introduction of UAG, UAA and UGA nonsense mutations at a specific site in theEscherichia coli chloramphenicol acetyl transferase gene: use in measurement of amber, ochre and opal suppression in mammalian cells. Mol Cell Biol 6:3059–3067

    PubMed  CAS  Google Scholar 

  • Davies J (1966) Streptomycin and the genetic code. Cold Spring Harbor Symp Quant Biol 31:665–670

    PubMed  CAS  Google Scholar 

  • Edelmann P, Martin R, Gallant J (1987) Nonsense suppression context effects inEscherichia coli bacteriophage T4. Mol Gen Genet 207:517–518

    Article  PubMed  CAS  Google Scholar 

  • Ellis N, Gallant J (1982) An estimate of the global error frequency in translation. Mol Gen Genet 188:169–172

    Article  PubMed  CAS  Google Scholar 

  • Faxen M, Kirsebom LA, Isaksson LA (1988) Is efficiency of suppressor tRNAs controlled at the level of ribosomal proofreading in vivo? J Bacteriol 170:3756–3760

    PubMed  CAS  Google Scholar 

  • Fluck MM, Salser W, Epstein RH (1977) The influence of the context upon the suppression of nonsense codons. Mol Gen Genet 151:137–149

    Article  PubMed  CAS  Google Scholar 

  • Gorini L (1970) Informational suppression. Annu Rev Genet 4:107–134

    Article  PubMed  CAS  Google Scholar 

  • Gorini L, Kataja E (1964) Phenotypic repair by streptomycin of defective genotypes inE. coli. Proc Natl Acad Sci USA 51:487–493

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Van der Eb A (1973) New technique for assay of infectivity of adenovirus 5 DNA. J Virol 52:456–467

    Article  CAS  Google Scholar 

  • Graham FL, Smiley J, Russel WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from Human Adenovirus type 5. J Gen Virol 36:59–72

    PubMed  CAS  Google Scholar 

  • Hodgkin J, Kondo K, Waterston RH (1987) Suppression in the nematodeCaenorhabditis elegans. Trends Genet 3:325–329

    Article  CAS  Google Scholar 

  • Ish-Horowicz D, Burke JF (1981) Rapid and efficient cosmid vector cloning. Nucleic Acids Res 9:2987–2989

    Google Scholar 

  • Johnston RC, Parker J (1985)_Streptomycin induced, third position misreading of the genetic code. J Mol Biol 181:313–315

    Article  PubMed  CAS  Google Scholar 

  • Kohli J, Grosjean H (1981) Usage of the three termination codons: Compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences. Mol Gen Genet 182:430–439

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (1987a) Strategies for efficiency and accuracy in gene expression. 1. The major codon preference; a growth optimization strategy. Trends Biochem Sci 12:126–128

    Article  CAS  Google Scholar 

  • Kurland CG (1987b) Strategies for efficiency and accuracy in gene expression. 2. Growth optimized ribosomes. Trends Biochem Sci 12:169–171

    Article  CAS  Google Scholar 

  • Kurland CG (1987c) Strategies for efficiency and accuracy in gene expression. 3. Drug dependence: growth at the edge. Trends Biochem Sci 12:210–212

    Article  CAS  Google Scholar 

  • Laski FA, Belagaje R, RajBhandary UL, Sharp PA (1982) An amber suppressor tRNA gene derived by site specific mutagenesis: cloning and expression in mammalian cells. Proc Natl Acad Sci USA 79:5813–5817

    Article  PubMed  CAS  Google Scholar 

  • Loftfield RB, Vanderjagt D (1972) The frequency of errors in protein biosynthesis. Biochem J 128:1353–1356

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Martin R, Hearn M, Jenny P, Gallant J (1988a) Release factor competition is equivalent at strong and weakly suppressed nonsense codons. Mol Gen Genet 213:144–149

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Weiner M, Gallant J (1988b) Effects of release factor context at UAA codons inEscherichia coli. J Bacteriol 170:4714–4717

    PubMed  CAS  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  PubMed  CAS  Google Scholar 

  • Miller JH, Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164:59–71

    Article  PubMed  CAS  Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 277:148–150

    Article  PubMed  CAS  Google Scholar 

  • Parker J, Johnston JC, Borgia TP (1980) Mistranslation in cells infected with the bacteriophage MS2: direct evidence of Lys and Asn substitution. Mol Gen Genet 180:275–281

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Kurland CG (1984) Streptomycin perturbs preferentially ribosomal proof reading. Mol Gen Genet 198:100–104

    Article  PubMed  CAS  Google Scholar 

  • Salser W (1969) The influence of the reading context of the suppression of nonsense codons. Mol Gen Genet 105:125–130

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sedivy JM, Capone JP, RajBhandary UL, Sharp PA (1987) An inducible mammalian amber suppressor: Propagation of a polio virus mutant. Cell 50:379–389

    Article  PubMed  CAS  Google Scholar 

  • Sherman F (1982) Suppression in the yeastSaccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeastSaccharomyces — Metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 463–486

    Google Scholar 

  • Stormo GD, Schneider TD, Gold L (1986) Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res 14:6661–6679

    PubMed  CAS  Google Scholar 

  • Weintraub H, Cheng PF, Conrad K (1986) Expression of transfected DNA depends on DNA topology. Cell 46:115–122

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1973) Evolution of the Genetic Code. Naturwissenschaften 60:447–459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Illmensee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R., Mogg, A.E., Heywood, L.A. et al. Aminoglycoside suppression at UAG, UAA and UGA codons inEscherichia coli and human tissue culture cells. Molec. Gen. Genet. 217, 411–418 (1989). https://doi.org/10.1007/BF02464911

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464911

Key words

Navigation