Skip to main content
Log in

Morphogenesis of “duct-like” structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Pancreatic duct cells secrete water and ions, bicarbonate in particular. The study of these secretion processes is hindered by the unavailability of human pancreatic tissue. In this study, pancreatic human cells of the Capan-1 cell line were employed to investigate secretion in vitro. These cells are of ductal origin because in standard culture they polarize spontaneously forming domes in the culture dishes, indicating the existence of transepithelial exchange of water and electrolytes.

In culture in suspension, Capan-1 cells form hollow spheroids bounded by a cell monolayer in a radial organization. These three-dimensional structures could be maintained in culture for more than 140 days. In young cultures, the cells of these spheroids grew rapidly (mitotic index=9.2% on Day 2). Their cytologic features were analyzed by immunocytochemical, cytoenzymatic methods, and by electron microscopy. We showed that they are : a) polarized with an apical pole facing the culture medium; b) organized in a monolayer; c) bound by tight junctions and desmosomes; d) characterized by a particular distribution of enzyme systems known to play a role in ion exchanges, with placental-type alkaline phosphatases and carbonic anhydrases IV on their apical membranes and Ca2+-ATPases on their basolateral membranes. Crystalline structures were detected histochemically in the closed cavities and in the intercellular spaces of the spheroids. X-ray emission spectroscopy and electron diffraction showed that they consisted of calcium phosphate in an apatite structure. They were assumed to derive from a raised concentration of Ca2+ and phosphate ions under the impermeable monolayer of the spheroids. In addition, numerous cells secreted M1 gastric-type mucins, and acquired the ability to produce colonic-type M3 mucins. These hollow spheroids swelled during the culture period. Taken together these results suggest that the Capan-1 cells organized in these hollow spheroids exchange ions. Their three-dimensional structure resembles that of human pancreatic ducts, and they may therefore represent a useful model system for investigation of Cl and HCO3 ion exchange processes in the human pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker, H.; Pietruschka, F.; Deutscher, J. Endothelial cell mitogen released from HT29 tumour cells grown in monolayer or multicellular spheroid culture. Br. J. Cancer 62:376–377; 1990.

    PubMed  CAS  Google Scholar 

  2. Ando, T.; Fujimoto, K.; Mayahara, H., et al. A new one-step method for the histochemistry and cytochemistry of Ca2+-ATPase activity. Acta Histochem. Cytochem. 14:705–726; 1981.

    CAS  Google Scholar 

  3. Becq, F.; Fanjul, M.; Mahieu, I., et al. Anion channels in a human pancreatic cancer cell line (Capan-1) of ductal origin. Pflügers Arch. 420:46–53; 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Bernard, J. P.; Adrich, Z.; Montalto, G., et al. Inhibition of nucleation and crystal growth of calcium carbonate by human lithostathine. Gastroenterology. In press; 1992.

  5. Carlsson, J.; Nilsson, K.; Westermark, B., et al. Formation and growth of multicellular spheroids of human origin. Int. J. Cancer 31:523–533; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Carter, N. D.; Fryer, A.; Grant, A. G., et al. Membrane specific carbonic anhydrase (CAIV) expression in human tissues. Biochim. Biophys. Acta 1026:113–116; 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Case, R. M.; Argent, B. E. Bicarbonate secretion by pancreatic duct cells: mechanisms and control. In: Go, V. L. W., et al., eds. The exocrine pancreas: biology, pathobiology and diseases. New York: Raven Press; 1986:213–243.

    Google Scholar 

  8. Chen, J. M. The cultivation in fluid medium of organized liver, pancreas and other tissues of foetal rats. Exp. Cell. Res. 7:518–529; 1954.

    PubMed  CAS  Google Scholar 

  9. Chen, W. H.; Horoszewicz, J. S.; Leong, S. S., et al. Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro Cell. Dev. Biol. 18:24–34; 1982.

    Article  CAS  Google Scholar 

  10. Fanjul, M.; Theveniau, M.; Palevody, C., et al. Expression and characterization of alkaline phosphatases during differentiation of human pancreatic cancer (Capan-1) cells in culture. Biol. Cell 73:15–25; 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Fögh, J.; Fögh, J. M.; Orfeo, T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. JNCI 59:221–226; 1977.

    PubMed  Google Scholar 

  12. Githens, S.; Holmquist, D. R. G.; Whelan, J. F., et al. Ducts of the rat pancreas in agarose matrix culture. In Vitro Cell. Dev. Biol. 16:797–808; 1980.

    Article  Google Scholar 

  13. Gumbiner, B.; Stevenson, B.; Grimaldi, A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107:1575–1587; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Hollande, E.; Trocheris de St-Front, V.; Louet-Hermitte, P., et al. Differentiation features of human pancreatic tumor cells maintained in nude mice and in culture: immunocytochemical and ultrastructural studies. Int. J. Cancer 34:177–185; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Hollande, E.; Levrat di-Donato, J. H.; Fanjul, M., et al. Calcium phosphate deposits in domes of human pancreatic adenocarcinoma (Capan-1) cell cultures. Biol. Cell 69:191–203; 1991.

    Article  Google Scholar 

  16. Hootman, S. R.; Logsdon, C. D. Isolation and monolayer culture of guinea pig pancreatic duct epithelial cells. In Vitro Cell. Dev. Biol. 24:566–574; 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Hugon, J.; Borgers, M. A direct lead method for the electron microscopic visualization of alkaline phosphatase activity. J. Histochem. Cytochem. 14:429–431; 1966.

    PubMed  CAS  Google Scholar 

  18. Jones, R. T.; Barrett, L. A.; van Haaften, C., et al. Carcinogenesis in the pancreas. I. Long-term explant culture of human and bovine pancreatic ducts. JNCI 58:557–565; 1977.

    PubMed  CAS  Google Scholar 

  19. Karbach, U.; Gerharz, C. D.; Groebe, K., et al. Rhabdomyosarcoma spheroids with central proliferation and differentiation. Cancer Res. 52:474–477; 1992.

    PubMed  CAS  Google Scholar 

  20. Kyriasis, A. P.; Kyriasis, A. A.; Scarpelli, D. G., et al. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse—morphologic, biologic, and biochemical characteristics. Am. J. Pathol. 106:250–260; 1982.

    Google Scholar 

  21. Laderoute, K. R.; Murphy, B. J.; Short, S. M., et al. Enhancement of transforming growth factor-α synthesis in multicellular tumour spheroids of A431 squamous carcinoma cells. Br. J. Cancer 65:157–162; 1992.

    PubMed  CAS  Google Scholar 

  22. Ladman, A. J.; Martinez, A. O. Cell contacts and surface features of three murine tumors grown as multicellular spheroids. Eur. J. Cell Biol. 45:224–229; 1987.

    Google Scholar 

  23. Levrat, J. H.; Palevody, C.; Daumas, M., et al. Differentiation of the human pancreatic adenocarcinoma cell line (Capan-1) in culture and co-culture with fibroblasts dome formation. Int. J. Cancer 42:615–621; 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Morgan, R. T.; Woods, L. K.; Moore, G. E., et al. Human cell line (colo 357) of metastatic pancreatic adenocarcinoma. Int. J. Cancer 25:591–598; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Murat, C.; Esclassan, J.; Daumas, M., et al. Enhanced membrane phospholipid metabolism in human pancreatic adenocarcinoma cell lines detected by low-resolution1H nuclear magnetic resonance spectroscopy. Pancreas 4:145–152; 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Nederman, T.; Norling, B.; Glimelius, B., et al. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44:3090–3097; 1984.

    PubMed  CAS  Google Scholar 

  27. Nefussi, J. R.; Boy-Lefevre, M. L.; Boulekbache, H., et al. Mineralizationin vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29:160–168; 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Puech, J.; Puech-Bauw, M.; Lafourcade, L., et al. Les diagrammes de diffraction électronique Debye-Scherrer des phosphates de calcium d’intérêt biologique. Ann. Chim. Fr. 6:641–651; 1981.

    CAS  Google Scholar 

  29. Remy, L.; Michel-Bechet, M.; Cataldo, C., et al. The role of intracellular lumina in thyroid cells for follicle morphogenesis in vitro. J. Ultrastruc. Res. 61:243–253; 1977.

    Article  CAS  Google Scholar 

  30. Remy, L.; Marvaldi, J.; Rua, S., et al. The role of intracellular lumina in the repolarization process of a colonic adenocarcinoma cell line. Virchows Arch. 46:297–305; 1984.

    Article  CAS  Google Scholar 

  31. Roberts, P. F.; Burns, J. A histochemical study of mucins in normal and neoplastic human pancreatic tissue. J. Pathol. 107:87–94; 1972.

    Article  PubMed  CAS  Google Scholar 

  32. Sutherland, R. M.; McCredie, J. A.; Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. JNCI 46:113–120; 1971.

    PubMed  CAS  Google Scholar 

  33. Takano, Y.; Ozawa, H.; Crenshaw, M. A. Ca-ATPase and ALpase activities at the initial calcification sites of dentin and enamel in the rat incisor. Cell Tissue Res. 243:91–99; 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Thiery, J. P.; Delouvee, A.; Gallin, W. J., et al. Ontogenic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev. Biol. 102:61–78; 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Weimer, S. Organization of organic matrix components in mineralized tissues. Am. Zool. 24:945–951; 1984.

    Google Scholar 

  36. Yoshida, Y.; Kaneko, A.; Chisaka, N., et al. Appearance of intestinal type of tumor cells in hepatoma tissue induced by 3′-methyl-4-dimethylaminoazobenzene. Cancer Res. 38:2753–2758; 1978.

    PubMed  CAS  Google Scholar 

  37. Yuhas, J. M.; Li, A. P.; Martinez, A. O., et al. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 37:3639–3643; 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanjul, M., Hollande, E. Morphogenesis of “duct-like” structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1). In Vitro Cell Dev Biol - Animal 29, 574–584 (1993). https://doi.org/10.1007/BF02634151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634151

Key words

Navigation