Skip to main content

Advertisement

Log in

The NADPH Oxidase Family and its Inhibitors

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

PKC:

Protein kinase C

H2O2 :

Hydrogen peroxide

GSH:

Reduced glutathione

NO:

Nitric oxide

MPO:

Myeloperoxidase

DPI:

Diphenyleneiodonium chloride

AEBSF:

4-(2-aminoethyl)-benzenesulphonyl fluoride; S17834: 1,4-dimethyl-2,3,5,6-tetraiodobenzene

VAS-2870:

3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo(4,5- d) pyrimidine

PR-39:

Proline-arginine-rich antimicrobial peptide

VEGF:

Vascular endothelial growth factor

TNF-α:

Tumor necrosis factor α

ox-LDL:

Oxidized low-density lipoprotein

AGEs:

Advanced glycation end-products

NEFAs:

Non-esterified fatty acids

PDGF:

Platelet-derived growth factor

VSMCs:

Vascular smooth muscles cells

FAD:

Flavin adenine dinucleotide

References

  • Abdelghaffar H, Babin-Chevaye C, Labro MT (2005) The macrolide roxithromyci impairs NADP oxidase activation and alters translocation of its cytosoli components to the neutrophil membrane in vitro. Antimicrob Agents Chemother 49:2986–2989

    Article  PubMed  CAS  Google Scholar 

  • Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265

    Article  PubMed  CAS  Google Scholar 

  • Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms on action. Immunopharmacology 47:85–118

    Article  PubMed  CAS  Google Scholar 

  • Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159:966–973

    Article  PubMed  CAS  Google Scholar 

  • Ashrafian H, Horowitz JD, Frenneaux MP (2007) Perhexiline. Cardiovasc Drug Rev 25:76–97

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  • Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16:42–47

    Article  PubMed  CAS  Google Scholar 

  • Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–746

    Article  PubMed  CAS  Google Scholar 

  • Bai YP, Hu CP, Chen MF et al (2009) Inhibitory effect of reinioside C on monocyte-endothelial cell adhesion induced by oxidized low-density lipoprotein via inhibiting NADPH oxidase/ROS/NF-kappaB pathway. Naunyn Schmiedebergs Arch Pharmacol 380:399–406

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Clark RA, Steger K et al (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  PubMed  CAS  Google Scholar 

  • Banfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    Article  PubMed  CAS  Google Scholar 

  • Barua M, Liu Y, Quinn MR (2001) Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macromacrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 167:2275–2281

    PubMed  CAS  Google Scholar 

  • Bataller R, Schwabe RF, Choi YH et al (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112:1383–1394

    PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  • BelAiba RS, Djordjevic T, Petry A et al (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459

    Article  PubMed  CAS  Google Scholar 

  • Bey E, Xu B, Bhattacharjee A et al (2004) Protein kinase Cδ is required for p47phox phosphorylation and translocation in activated human monocytes1. J Immunol 173:5730–5738

    PubMed  CAS  Google Scholar 

  • Biberstine-Kinkade KJ, DeLeo FR, Epstein RI et al (2001) Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). J Biol Chem 276:31105–31112

    Article  PubMed  CAS  Google Scholar 

  • Block ML (2008) NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 9(2):S8

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Prossnitz V (1992) Isoprenoid metabolism is required for stimulation of the respiratory urst oxidase of HL-60 cells. J Clin Invest 89:402–408

    Article  PubMed  CAS  Google Scholar 

  • Bolscher BG, de Boer M, de Klein A et al (1991) Point mutations in the beta-subunit of cytochrome b558 leading to X-linked chronic granulomatous disease. Blood 77:2482–2487

    PubMed  CAS  Google Scholar 

  • Bonnefont-Rousselot D, Raji B, Walrand S et al (2003) An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 52:586–589

    Article  PubMed  CAS  Google Scholar 

  • Bouloumie A, Marumo T, Lafontan M et al (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J 13:1231–1238

    PubMed  CAS  Google Scholar 

  • Brandes RP, Schröder K (2008) Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 19:513–518

    Article  PubMed  CAS  Google Scholar 

  • Brandsch R, Bichler V (1987) Covalent flavinylation of 6-hydroxy-d-nicotine oxidase involves an energy-requiring process. FEBS Lett 224:121–124

    Article  PubMed  CAS  Google Scholar 

  • Bromberg Y, Pick E (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260:13539–13545

    PubMed  CAS  Google Scholar 

  • Cachia O, Benna JE, Pedruzzi E et al (1998) Alpha-tocopherol inhibits the respiratory burst in human monocytes. Attenuation of p47phox membrane translocation and phosphorylation. J Biol Chem 273:32801–32805

    Article  PubMed  CAS  Google Scholar 

  • Capone C, Faraco G, Park L et al (2011) The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol 300:H397–H407

    Article  PubMed  CAS  Google Scholar 

  • Cayatte AJ, Rupin A, Oliver-Krasinski J et al (2001) S17834, a new inhibitor of cell adhesion and atherosclerosis that targets NADPH oxidase. Arterioscler Thromb Vasc Biol 21:1577–1584

    Article  PubMed  CAS  Google Scholar 

  • Cernuda-Morollon E, Ridley AJ (2006) Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res 98:757–767

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Kirber MT, Xiao H et al (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Lee DY, Chung ES et al (2005) Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem 95:1755–1765

    Article  PubMed  CAS  Google Scholar 

  • Ciarcia R, Damiano S, Panico C et al (2010) Apocynin activity in spontaneously hypertensive rats (SHR): preliminary studies in vivo. Vet Res Commun 34(Suppl 1):S83–S86

    Article  PubMed  Google Scholar 

  • Clempus RE, Sorescu D, Dikalova AE et al (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42–48

    Article  PubMed  CAS  Google Scholar 

  • Coles B, Bloodsworth A, Clark SR et al (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res 91:375–381

    Article  PubMed  CAS  Google Scholar 

  • Comera C, Andre K, Laffitte J et al (2007) Gliotoxin from Aspergillus fumigatus affects phagocytosis and the organization of the actin cytoskeleton by distinct signalling pathways in human neutrophils. Microbes Infect 9:47–54

    Article  PubMed  CAS  Google Scholar 

  • Cross AR, Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237:111–116

    PubMed  CAS  Google Scholar 

  • Cross AR, Parkinson JF, Jones OT (1984) The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 223:337–344

    PubMed  CAS  Google Scholar 

  • Dahan I, Issaeva I, Gorzalczany Y (2002) Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277:8421–8432

    Article  PubMed  CAS  Google Scholar 

  • Dai DZ, Dai Y (2010) Role of endothelin receptor A and NADPH oxidase in vascular abnormalities. Vasc Health Risk Manag 6:787–794

    Article  PubMed  CAS  Google Scholar 

  • Dang PM, Morel F, Gougerot-Pocidalo MA et al (2003) Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526

    Article  PubMed  CAS  Google Scholar 

  • Deby-Dupont G, Mouithys-Mickalad A, Serteyn D et al (2005) Resveratrol and curcumin reduce the respiratory burst of Chlamydia-primed THP-1 ncells. Biochem Biophys Res Commun 333:21–27

    Article  PubMed  CAS  Google Scholar 

  • DeLeo FR, Yu L, Burritt JB et al (1995) Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA 92:7110–7114

    Article  PubMed  CAS  Google Scholar 

  • Dewas C, Dang PM, Gougerot-Pocidalo MA et al (2003) TNF-α induces phosphorylation of p47phox in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-α and granulocyte-macrophage colony-stimulating factor 1. J Immunol 171:4392–4398

    PubMed  CAS  Google Scholar 

  • Diatchuk V, Lotan O, Koshkin V et al (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 272:13292–13301

    Article  PubMed  CAS  Google Scholar 

  • Dikalova A, Clempus R, Lassegue B et al (2005) Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112:2668–2676

    Article  PubMed  CAS  Google Scholar 

  • Dinauer MC, Pierce EA, Bruns GA et al (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. Clin Invest 86:1729–1737

    Article  CAS  Google Scholar 

  • Dusting GJ, Selemidis S, Jiang F (2005) Mechanisms for suppressing NADPH oxidase in the vascular wall. Mem Inst Oswaldo Cruz 100(suppl 1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Dworakowski R, Alom-Ruiz SP, Shah AM (2008) NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol Rep 60:21–28

    PubMed  CAS  Google Scholar 

  • Egger T, Hammer A, Wintersperger A et al (2001) Modulation of microglial superoxide production by alpha-tocopherol in vitro: attenuation of p67 (phox) translocation by a protein phosphatase-dependent pathway. J Neurochem 79:1169–1182

    Article  PubMed  CAS  Google Scholar 

  • Ellmark SH, Dusting GJ, Fui MN et al (2005) The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res 65:495–504

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Katsuyama M, Nishinaka T et al (2005) Transactivation of the EGF receptor and a PI3 kinase-ATF-1 pathway is involved in the upregulation of NOX1, a catalytic subunit of NADPH oxidase. FEBS Lett 579:1301–1305

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    Article  PubMed  CAS  Google Scholar 

  • Fernandes DC, Manoel AH, Wosniak J et al (2009) Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys 484:197–204

    Article  PubMed  CAS  Google Scholar 

  • Fontayne A, Dang PM, Gougerot-Pocidalo MA et al (2002) Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41:7743–7750

    Article  PubMed  CAS  Google Scholar 

  • Francke U, Ochs HD, Darras BT et al (1990) Origin of mutations in two families with X-linked chronic granulomatous disease. Blood 76:602–606

    PubMed  CAS  Google Scholar 

  • Gatley SJ, Sherratt HS (1976) The effects of diphenyleneiodonium and of 2,4- dichlorodiphenyleneiodonium on mitochondrial reactions. Mechanism of the inhibition of oxygen uptake as a consequence of the catalysis of the chloride/hydroxyl-ion exchange. Biochem J 158:317–326

    PubMed  CAS  Google Scholar 

  • Gayen JR, Zhang K, RamachandraRao SP et al (2010) Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin a (Chga) gene. Circ Cardiovasc Genet 3:414–425

    Article  PubMed  CAS  Google Scholar 

  • Geiszt M (2006) NADPH oxidases: new kids on the block. Cardiovasc Res 71:289–299

    Article  PubMed  CAS  Google Scholar 

  • Geiszt M, Lekstrom K, Witta J et al (2003) Proteins homologous to p47phox and p67phox support superoxide production by NADPH oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012

    Article  PubMed  CAS  Google Scholar 

  • Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386(3):401–416

    Article  PubMed  CAS  Google Scholar 

  • Hennig B, Toborek M, McClain CJ et al (1996) Nutritional implications in vascular endothelial cell metabolism. J Am Coll Nutr 15:345–358

    PubMed  CAS  Google Scholar 

  • Heumüller S, Wind S, Barbosa-Sicard E et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    Article  PubMed  CAS  Google Scholar 

  • Holland JA, Meyer JW, Schmitt ME et al (1997) Low-density lipoprotein stimulated peroxide production and endocytosis in cultured human endothelial cells: mechanisms of action. Endothelium 5:191–207

    Article  PubMed  CAS  Google Scholar 

  • Holland JA, Meyer JW, Chang MM et al (1998) Thrombin stimulated reactive oxygen species production in cultured human endothelial cells. Endothelium 6:113–121

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Zheng G, Zweier JL et al (2000) NADPH oxidase activation increases the sensitivity of intracellular Ca2+stores to inositol 1,4,5-trisphosphate in human endothelial cells. J Biol Chem 275:15749–15757

    Article  PubMed  CAS  Google Scholar 

  • Huang A, Yan C, Suematsu N et al (2010) Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC and NADPH oxidase. Am J Physiol Heart Circ Physiol 299:H1476–H1483

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson DS, Csikasz RI, Yamamoto DL et al (2007) Diphenylene iodonium stimulates glucose uptake in skeletal muscle cells through mitochondrial complex I inhibition and activation of AMPactivated protein kinase. Cell Signal 19:1610–1620

    Article  PubMed  CAS  Google Scholar 

  • Ibi M, Matsuno K, Shiba D et al (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494

    Article  PubMed  CAS  Google Scholar 

  • Inoue N, Ohara Y, Fukai T et al (1998) Probucol improves endothelial-dependent relaxation and decreases vascular superoxide production in cholesterol-fed rabbits. Am J Med Sci 315:242–247

    Article  PubMed  CAS  Google Scholar 

  • Ippoushi K, Itou H, Azuma K et al (2002) Effect of naturally occurring organosulfur compounds on nitric oxide production in lipopolysaccharideactivated macrophages. Life Sci 71:411–419

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Komori K, Okazaki Je et al (1997) The effect of probucol on intimal thickening of autologous vein grafts in hyperlipidemic rabbit. Cardiovasc Surg 5:497–503

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Umemoto S, Hiromoto M et al (2002) Importance of NADPH oxidase-mediated oxidative stress and contractile type smooth muscle myosin heavy chain SM2 at the early stage of atherosclerosis. Circulation 105:2288–2295

    Article  PubMed  CAS  Google Scholar 

  • Jagnandan D, Church JE, Banfi B et al (2007) Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation. J Biol Chem 282:6494–6507

    Article  PubMed  CAS  Google Scholar 

  • Johnson DK, Schillinger KJ, Kwait DM et al (2002) Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxysubstituted catechols. Endothelium 9:191–203

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Howl J (2006) Biological applications of the receptor mimetic peptide mastoparan. Curr Protein Pept Sci 7:501–508

    Article  PubMed  CAS  Google Scholar 

  • Judkins CP, Diep H, Broughton BR et al (2010) Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol 298:H24–H32

    Article  PubMed  CAS  Google Scholar 

  • Kahles T, Luedike P, Endres M et al (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000–3006

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski L, Malinski T (2004) Endothelial NADH/NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochim Pol 51:459–469

    PubMed  CAS  Google Scholar 

  • Kaneyuki U, Ueda S, Yamagishi S et al (2007) Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation. Vascul Pharmacol 46:286–292

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Utsumi T, Takehara Y et al (1996) Inhibition of neutrophil-superoxide generation by alpha-tocopherol and coenzyme Q. Free Radic Res 24:281–289

    Article  PubMed  CAS  Google Scholar 

  • Kawahara T, Lambeth JD (2007) Molecular evolution of Phox-related regulatory subunits for NADPH oxidase enzymes. BMC Evol Biol 7:178

    Article  PubMed  CAS  Google Scholar 

  • Kawahara T, Kuwano Y, Teshima-Kondo S et al (2004) Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 172:3051–3058

    PubMed  CAS  Google Scholar 

  • Kawahara T, Ritsick D, Cheng G et al (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280:31859–31869

    Article  PubMed  CAS  Google Scholar 

  • Kawczynska-Drozdz A, Olszanecki R, Jawien J et al (2006) Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats. Am J Hypertens 19:764–767

    Article  PubMed  CAS  Google Scholar 

  • Keaney JF Jr, Xu A, Cunningham D et al (1995) Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest 95:2520–2529

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JA, Beck-Oldach K, McFadden-Lewis K et al (2006) Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol 531:13–19

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Hikage M, Miyashita H et al (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254:237–243

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Park E, Quinn MR et al (1996) The production of superoxide anion and nitric oxide by cultured murine leukocytes and the accumulation of TNFalpha in the conditioned media is inhibited by taurine chloramine. Immunopharmacology 34:89–95

    Article  PubMed  CAS  Google Scholar 

  • Koga H, Terasawa H, Nunoi H et al (1999) Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  PubMed  CAS  Google Scholar 

  • Kou B, Zhang J, Singer DR (2009) Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NADPH subunit p22phox. Microvasc Res 77:125–133

    Article  PubMed  CAS  Google Scholar 

  • Koupparis AJ, Jeremy JY, Muzaffar S et al (2005) Sildenafil inhibits the formation of superoxide and the expression of gp47phox NADPH oxidase induced by the thromboxane A2 mimetic, U46619, in corpus cavernosal smooth muscle cells. BJU Int 96:423–427

    Article  PubMed  CAS  Google Scholar 

  • Krötz F, Keller M, Derflinger S et al (2007) Mycophenolate acid inhibits endothelial NADPH oxidase activity and superoxide formation by a Rac1-dependent mechanism. Hypertension 49:201–208

    Article  PubMed  CAS  Google Scholar 

  • Kwak JY, Takeshige K, Cheung BS et al (1991) Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta 1076:369–373

    Article  PubMed  CAS  Google Scholar 

  • Kweon YO, Paik YH, Schnabl B et al (2003) Gliotoxin-mediated apoptosis of activated human hepatic stellate cells. J Hepatol 39:38–46

    Article  PubMed  CAS  Google Scholar 

  • Lafeber FP, Beukelman CJ, van den Worm E et al (1999) Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology 38:1088–1093

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Harrison DG (2001) Oxidative stress and vascular damage in hypertension. Coron Artery Dis 12:455–461

    Article  PubMed  CAS  Google Scholar 

  • Lanone S, Bloc S, Foresti R et al (2005) Bilirubin decreases NOS2 expression via inhibition of NADPH oxidase: implications for protection against endotoxic shock in rats. FASEB J 19:1890–1892

    PubMed  CAS  Google Scholar 

  • Lapouge K, Smith SJ, Groemping Y et al (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277:10121–10128

    Article  PubMed  CAS  Google Scholar 

  • Lassegue B, Clempus RE (2003) Vascular NADPH oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:277–297

    Google Scholar 

  • Lee NK, Choi YG, Baik JY et al (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    Article  PubMed  CAS  Google Scholar 

  • Lee YW, Lee WH, Kim PH (2010) Role of NADPH oxidase in interleukin-4-induced monocyte chemoattractant protein-1 expression in vascular endothelium. Inflamm Res 59:755–765

    Article  PubMed  CAS  Google Scholar 

  • Leiro J, Alvarez E, Arranz JA et al (2004) Effects of cisresveratrol on inflammatory murine macrophages: antioxidant activity and downregulation of inflammatory genes. J Leukoc Biol 75:1156–1165

    Article  PubMed  CAS  Google Scholar 

  • Leusen JHW, Verhoeven AJ, Roos D (1996) Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1:d72–d90

    PubMed  CAS  Google Scholar 

  • Li JM, Shah AM (2003) Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278:12094–12100

    Article  PubMed  CAS  Google Scholar 

  • Li L, Fink GD, Watts SW et al (2003) Endothelin-1 increases vascular superoxide via endothelinA-NADPH oxidase pathway in low-renin hypertension. Circulation 107:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Fan LM, Christie MR et al (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25:2320–2330

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Harraz MM, Zhou W et al (2006) Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26:140–154

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lévesque LO, Anand-Srivastava MB (2010) Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 299:H1959–H1967

    Article  PubMed  CAS  Google Scholar 

  • Lima ES, Bonini MG, Augusto O et al (2005) Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic Biol Med 39:532–539

    Article  PubMed  CAS  Google Scholar 

  • Lyle AN, Deshpande NN, Taniyama Y et al (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105:249–259

    Article  PubMed  CAS  Google Scholar 

  • Mahrouf M, Ouslimani N, Peynet J et al (2006) Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol 72:176–183

    Article  PubMed  CAS  Google Scholar 

  • Marco G, Michele S (2007) The role of PDE5-inhibitors in cardiopulmonary disorders: from basic evidence to clinical development. Curr Med Chem 14:2181–2192

    Article  Google Scholar 

  • Martyn KD, Frederick LM, von Loehneysen K (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  PubMed  CAS  Google Scholar 

  • Mason RP, Kalinowski L, Jacob RF et al (2005) Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of Black Americans. Circulation 112:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Miller AA, Drummond GR, Sobey CG (2006) Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 111:928–948

    Article  PubMed  CAS  Google Scholar 

  • Miller SJ, Coppinger BJ, Zhou X et al (2010) Antioxidants reverse age-related collateral growth impairment. J Vasc Res 47:108–114

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi N, Takabayashi S, Osawa T et al (2004) Benzyl isothiocyanate inhibits excessive superoxide generation in inflammatory leukocytes: implication for prevention against inflammation-related carcinogenesis. Carcinogenesis 25:567–575

    Article  PubMed  CAS  Google Scholar 

  • Modlinger P, Chabrashvili T, Gill PS et al (2006) RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension 47:238–244

    Article  PubMed  CAS  Google Scholar 

  • Mollnau H, Schulz E, Daiber A et al (2003) Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells. Arterioscler Thromb Vasc Biol 23:615–621

    Article  PubMed  CAS  Google Scholar 

  • Montezano AC, Burger D, Ceravolo GS et al (2011) Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci 120:131–141

    Article  PubMed  CAS  Google Scholar 

  • Muzaffar S, Shukla N, Srivastava A et al (2005) Sildenafil citrate and sildenafil nitrate (NCX 911) are potent inhibitors of superoxide formation and gp91phox expression in porcine pulmonary artery endothelial cells. Br J Pharmacol 146:109–117

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto Y, Tsubouchi R, Diebold BA et al (2008) Activation of NADPH oxidase 1 in tumour colon epithelial cells. Biochem J 415:57–65

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell BV, Tew DG, Jones OT et al (1993) Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J 290(Pt 1):41–49

    PubMed  Google Scholar 

  • O’Donnell VB, Smith GC, Jones OT (1994) Involvement of phenyl radicals in iodonium inhibition of flavoenzymes. Mol Pharmacol 46:778–785

    PubMed  Google Scholar 

  • Oelze M, Daiber A, Brandes RP et al (2006) Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension 48:677–684

    Article  PubMed  CAS  Google Scholar 

  • Ouslimani N, Peynet J, Bonnefont-Rousselot D et al (2005) Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 54:829–834

    Article  PubMed  CAS  Google Scholar 

  • Ozaki Y, Ohashi T, Niwa Y (1986) A comparative study on the effects of inhibitors of the lipoxygenase pathway on neutrophil function. Inhibitory effects on neutrophil function may not be attributed to inhibition of the lipoxygenase pathway. Biochem Pharmacol 35:3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Panico C, Luo Z, Damiano S et al (2009) Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: roles of superoxide and Na+/H+exchanger 3. Hypertension 54:1291–1297

    Article  PubMed  CAS  Google Scholar 

  • Park YM, Park MY, Suh YL et al (2004) NADPH oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem Biophys Res Commun 313:812–817

    Article  PubMed  CAS  Google Scholar 

  • Perry DK, Hand WL, Edmondson DE et al (1992) Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. J Immunol 149:2749–2758

    PubMed  CAS  Google Scholar 

  • Petry A, Djordjevic T, Weitnauer M et al (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8:1473–1484

    Article  PubMed  CAS  Google Scholar 

  • Pflueger A, Croatt AJ, Peterson TE et al (2005) The hyperbilirubinemic Gunn rat is resistant to the pressor effects of angiotensin II. Am J Physiol Renal Physiol 288:F552–F558

    Article  PubMed  CAS  Google Scholar 

  • Poolman TM, Ng LL, Farmer PB et al (2005) Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signaling. Free Radic Biol Med 39:118–132

    Article  PubMed  CAS  Google Scholar 

  • Quinn MT, Ammons MC, Deleo FR (2006) The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 111:1–20

    Article  PubMed  CAS  Google Scholar 

  • Raad H, Paclet MH, Boussetta T et al (2009) Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox. FASEB J 23:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Ray R, Shah AM (2005) NADPH oxidase and endothelial cell function. Clin Sci 109:217–226

    Article  PubMed  CAS  Google Scholar 

  • Rey FE, Cifuentes ME, Kiarash A et al (2001) Novel competitive inhibitor of NADPH oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res 89:408–414

    Article  PubMed  CAS  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M et al (2004) Diphenyleneiodonium inhibits the cell redox metabolism and induces oxidative stress. J Biol Chem 279:47726–47731

    Article  PubMed  CAS  Google Scholar 

  • Rossary A, Arab K, Steghens JP (2007) Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts. Biochem J 406:77–83

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 20:21–23

    Article  PubMed  CAS  Google Scholar 

  • Rueckschloss U, Galle J, Holtz J et al (2001) Induction of NADPH oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 104:1767–1772

    Article  PubMed  CAS  Google Scholar 

  • Schubert ML (2007) Gastric secretion. Curr Opin Gastroenterol 23:595–601

    Article  PubMed  CAS  Google Scholar 

  • Schulz E, Münzel T (2008) NOX5, a new “radical” player in human atherosclerosis? J Am Coll Cardiol 52:1803–1809

    Article  CAS  Google Scholar 

  • Sedeek M, Hébert RL, Kennedy CR et al (2009) Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens 18:122–127

    Article  PubMed  CAS  Google Scholar 

  • Sehr P, Joseph G, Genth H et al (1998) Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 37:5296–5304

    Article  PubMed  CAS  Google Scholar 

  • Selemidis S, Sobey CG, Wingler K et al (2008) NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254–291

    Article  PubMed  CAS  Google Scholar 

  • Serrander L, Cartier L, Bedard K et al (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406:105–114

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Ross CR, Leto TL et al (1996) PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47phox. Proc Natl Acad Sci USA 93:6014–6018

    Article  PubMed  CAS  Google Scholar 

  • Shukla N, Jones R, Persad R et al (2005) Effect of sildenafil citrate and a nitric oxide donating sildenafil derivative, NCX 911, on cavernosal relaxation and superoxide formation in hypercholesterolaemic rabbits. Eur J Pharmacol 517:224–231

    Article  PubMed  CAS  Google Scholar 

  • Si J, Fu X, Behar J et al (2007) NADPH oxidase NOX5-S mediates acid-induced cyclooxygenase-2 expression via activation of NF-kappaB in Barrett’s esophageal adenocarcinoma cells. J Biol Chem 282:16244–16255

    Article  PubMed  CAS  Google Scholar 

  • Simons JM, Hart LA, van Dijk H et al (1989) Immunodulatory compounds from Picrorhiza kurroa: isolation and characterization of two anti-complementary polymeric fractions from an aqueous root extract. J Ethnopharmacol 26:169–182

    Article  PubMed  CAS  Google Scholar 

  • Sorescu D, Weiss D, Lassegue B et al (2002) Superoxide production and expression of Nox family proteins in human atherosclerosis. Circulation 105:1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Stefanska J, Pawliczak R (2008) Apocynin: molecular aptitudes. Mediat Inflamm 2008:106507

    Article  CAS  Google Scholar 

  • Stielow C, Catar RA, Muller G et al (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205

    Article  PubMed  CAS  Google Scholar 

  • Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  PubMed  CAS  Google Scholar 

  • Stolk J, Hiltermann TJ, Dijkman JH et al (1994) Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxysubstituted catechol. Am J Respir Cell Mol Biol 11:95–102

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Fasehun OA, Kwon NS et al (1991) Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J 5:98–103

    PubMed  CAS  Google Scholar 

  • Suh YA, Arnold RS, Lassegue B et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Asnicar M, Smith RG (2007) Central and peripheral roles of ghrelin on glucose homeostasis. Neuroendocrinology 86:215–228

    Article  PubMed  CAS  Google Scholar 

  • Szanto I, Rubbia-Brandt L, Kiss P et al (2005) Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol 207:164–176

    Article  PubMed  CAS  Google Scholar 

  • ‘t Hart BA, Simons JM, Knaan-Shanzer S et al (1990) Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic Biol Med 9:127–131

    Article  PubMed  Google Scholar 

  • Takai S, Jin D, Shimosato T et al (2011) Candesartan and amlodipine combination therapy provides powerful vascular protection in stroke-prone spontaneously hypertensive rats. Hypertens Res 34:245–252

    Article  PubMed  CAS  Google Scholar 

  • Takeya R, Sumimoto H (2006) Regulation of novel superoxide-producing NADPH oxidases. Antioxid Redox Signal 8:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • ten Freyhaus H, Huntgeburth M, Wingler K et al (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smoothmuscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341

    Article  PubMed  CAS  Google Scholar 

  • Tisch D, Sharoni Y, Danilenko M (1995) The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues. Biochem J 310(Pt 2):715–719

    PubMed  CAS  Google Scholar 

  • Tisch-Idelson D, Fridkin M, Wientjes F et al (2001) Structure-function relationship in the interaction of mastoparan analogs with neutrophil NADPH oxidase. Biochem Pharmacol 61:1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34:5–14

    Article  PubMed  CAS  Google Scholar 

  • Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122:339–352

    Article  PubMed  CAS  Google Scholar 

  • Troost R, Schwedhelm E, Rojczyk S et al (2000) Nebivolol decreases systemic oxidative stress in healthy volunteers. Br J Clin Pharmacol 50:377–379

    Article  PubMed  CAS  Google Scholar 

  • Tsai MH, Jiang MJ (2010) Reactive oxygen species are involved in regulating alpha1-adrenoceptor-activated vascular smooth muscle contraction. J Biomed Sci 17:67

    Article  PubMed  CAS  Google Scholar 

  • Tsunawaki S, Nathan CF (1986) Release of arachidonate and reduction of oxygen. Independent metabolic bursts of the mouse peritoneal macrophage. J Biol Chem 261:11563–11570

    PubMed  CAS  Google Scholar 

  • Tsunawaki S, Yoshida LS, Nishida S et al (2004) Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 72:3373–3382

    Article  PubMed  CAS  Google Scholar 

  • Vejrazka M, Mícek R, Stípek S (2005) Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim Biophys Acta 1722:143–147

    Article  PubMed  CAS  Google Scholar 

  • Vendrov AE, Hakim ZS, Madamanchi NR et al (2007) Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol 27:2714–2721

    Article  PubMed  CAS  Google Scholar 

  • Vendrov AE, Madamanchi NR, Niu XL et al (2010) NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombintreated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 285:26545–26557

    Article  PubMed  CAS  Google Scholar 

  • Venugopal SK, Devaraj S, Yang T et al (2002) Alpha-Tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-alpha. Diabetes 51:3049–3054

    Article  PubMed  CAS  Google Scholar 

  • Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  PubMed  CAS  Google Scholar 

  • Violi F, Sanguigni V, Carnevale R et al (2009) Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 120:1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Walch L, Massade L, Dufilho M et al (2006) Pro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression. Atherosclerosis 187:285–291

    Article  PubMed  CAS  Google Scholar 

  • Wallach TM, Segal AW (1997) Analysis of glycosylation sites on gp91phox, the flavocytochrome of the NADPH oxidase, by site-directed mutagenesis and translation in vitro. Biochem J 321(3):583–585

    PubMed  CAS  Google Scholar 

  • Wassmann S, Laufs U, Muller K et al (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305

    Article  PubMed  CAS  Google Scholar 

  • Williams HC, Griendling KK (2007) NADPH Oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16

    Article  PubMed  CAS  Google Scholar 

  • Wind S, Beuerlein K, Armitage ME et al (2010) Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 56:490–497

    Article  PubMed  CAS  Google Scholar 

  • Xaplanteris P, Vlachopoulos C, Baou K et al (2010) The effect of p22(phox) -930A/G, A640G and C242T polymorphisms of NADPH oxidase on peripheral and central pressures in healthy, normotensive individuals. Hypertens Res 33:814–818

    Article  PubMed  CAS  Google Scholar 

  • Xiao D, Vogel V, Singh SV (2006) Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol Cancer Ther 5:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Ximenes VF, Kanegae MP, Rissato SR et al (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457:134–141

    Article  PubMed  CAS  Google Scholar 

  • Xue B, Beltz TG, Yu Y et al (2011) Central Interactions of Aldosterone (Aldo) and Angiotensin II (ANG II) in Aldo- and ANG II-induced Hypertension. Am J Physiol Heart Circ Physiol 300:H555–H564

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Foster E, Kahn AM (2005) Insulin-stimulated NADPH oxidase activity increases migration of cultured vascular smooth muscle cells. Am J Hypertens 18:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Yibin G, Jiang Z, Hong Z et al (2005) A synthesized cationic tetradecapeptide from hornet venom kills bacteria and neutralizes lipopolysaccharide in vivo and in vitro. Biochem Pharmacol 70:209–219

    Article  PubMed  CAS  Google Scholar 

  • Yoshida LS, Abe S, Tsunawaki S (2000) Fungal gliotoxin targets the onset of superoxide-generating NADPH oxidase of human neutrophils. Biochem Biophys Res Commun 268:716–723

    Article  PubMed  CAS  Google Scholar 

  • Zang M, Xu S, Maitland-Toolan KA et al (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191

    Article  PubMed  CAS  Google Scholar 

  • Zhan S, Vazquez N, Zhan S et al (1996) Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p40-phox, a new component of the nicotinamide adenine dinucleotide phosphate-oxidase complex. Blood 88:2714–2721

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chan MM, Andrews MC et al (2005) Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat. Am J Hypertens 18:910–916

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Marchal CC, Casbon AJ et al (2006) Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 281:30336–30346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant 503/0-079-03/503-01 and 503/3-021-01/503-01 from the Medical University of Łódź.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Kleniewska.

About this article

Cite this article

Kleniewska, P., Piechota, A., Skibska, B. et al. The NADPH Oxidase Family and its Inhibitors. Arch. Immunol. Ther. Exp. 60, 277–294 (2012). https://doi.org/10.1007/s00005-012-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0176-z

Keywords

Navigation