Skip to main content
Log in

Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Angiotensin-converting enzyme 2 (ACE2) is expressed in gastrointestinal tissue. Previous studies of GL1001, a potent and selective ACE2 inhibitor, have revealed anti-inflammatory activity in the mouse digestive tract. We hypothesized that GL1001 might also produce beneficial effects in a mouse DSS model of inflammatory bowel disease.

Materials

Female mice were used for study.

Treatment

Animals were treated for 5 days with 5% DSS in the drinking water to induce colitis. For the following 9 days, animals were treated twice daily with GL1001 (30, 100, 300 mg/kg, s.c.), sulfasalazine (150 mg/kg, p.o.), or vehicle.

Methods

Throughout the experiment, body weight, rectal prolapse, stool consistency, and fecal occult blood were monitored. At termination, colon length, histopathology, and myeloperoxidase activity were assessed.

Results

High-dose GL1001 ameliorated DSS-induced disease activity, including rectal prolapse and intestinal bleeding. The most robust effect of GL1001 was observed 48–96 h post DSS treatment and was comparable in magnitude to that of sulfasalazine. Colon pathology and myeloperoxidase activity were also markedly attenuated by high-dose GL1001 treatment, with the most profound effects observed in the distal segment.

Conclusions

The findings support the previously observed anti-inflammatory effects of ACE2 inhibition in gastrointestinal tissue and suggest that GL1001 may have therapeutic utility for inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IBD:

Inflammatory bowel disease

DSS:

Dextran sodium sulfate

Ang:

Angiotensin

Ang I:

Angiotensin I

Ang II:

Angiotensin II

ACE:

Angiotensin-converting enzyme

ACE2:

Angiotensin-converting enzyme 2

AT1 :

Angiotensin II receptor type 1

AT2 :

Angiotensin II receptor type 2

RAS:

Renin-angiotensin system

DAI:

Disease activity index

NSAID:

Nonsteroidal anti-inflammatory drug

MPO:

Myeloperoxidase

TNF-α:

Tumor necrosis factor α

References

  1. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterol. 2004;126:1504–17.

    Article  Google Scholar 

  2. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  PubMed  CAS  Google Scholar 

  3. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev. 2008;8:458–66.

    Article  CAS  Google Scholar 

  4. Katz JA. Management of inflammatory bowel disease in adults. J Dig Dis. 2007;8:65–71.

    Article  PubMed  CAS  Google Scholar 

  5. Derijks LJ, Gilissen LP, Hooymans PM, Hommes DW. Review article: thiopurines in inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24:715–29.

    Article  PubMed  CAS  Google Scholar 

  6. Kozuch PL, Hanauer SB. General principles and pharmacology of biologics in inflammatory bowel disease. Gastroenterol Clin N Am. 2006;35:757–73.

    Article  Google Scholar 

  7. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:1–9.

    Google Scholar 

  8. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275:33238–43.

    Article  PubMed  CAS  Google Scholar 

  9. Lambert DW, Hooper NM, Turner AJ. Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol. 2008;75:781–6.

    Article  PubMed  CAS  Google Scholar 

  10. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase (ACE2). J Biol Chem. 2002;277:14838–43.

    Article  PubMed  CAS  Google Scholar 

  11. Gurley SB, Coffman TM. Gene targeting studies of ACE2 in cardiovascular physiology: mixed messages. Exp Physiol. 2008;93:538–42.

    Article  PubMed  CAS  Google Scholar 

  12. Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc Med. 2003;13:93–101.

    Article  PubMed  CAS  Google Scholar 

  13. Hamming I, Cooper ME, Haagmans BL, Hooper NM, Korstanje R, Osterhaus ADME, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212:1–11.

    Article  PubMed  CAS  Google Scholar 

  14. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7.

    Article  PubMed  CAS  Google Scholar 

  15. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532:107–10.

    Article  PubMed  CAS  Google Scholar 

  16. Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss HP, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26:1270–7.

    Article  PubMed  CAS  Google Scholar 

  17. Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H. Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem. 2002;50:275–82.

    PubMed  CAS  Google Scholar 

  18. Malstrom S, Tyler S, Ellard C, Collins H, Coopersmith R, Barnes T, White D, Tartaglia L. Use of in vivo bio-photonic imaging to identify novel therapeutic utility for use of the ACE2 inhibitor GL1001 for treating inflammatory disorders of the gastrointestinal tract. Paper presented at IBC 13th annual world congress, drug discovery & development of innovative therapeutics 2008 Aug; Boston, MA.

  19. Malstrom S, Ellard C, Collins H, Coopersmith B, Barnes T, White D, Dimitrov L, Tartaglia L. Using in vivo biophotonic imaging in the repositioning of an ACE2 inhibitor. Paper presented at GTCbio conference, imaging in preclinical and clinical drug development 2007 Mar; Boston, MA.

  20. Dales NA, Gould AE, Brown JA, Calderwood EF, Guan B, Minor CA, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J Am Chem Soc. 2002;124:11852–3.

    Article  PubMed  CAS  Google Scholar 

  21. Guzman LM, Odate S, Boiselle CA, Gross SB, Wallace JL, Coopersmith R, et al. GL1001 inhibition of ACE2 is gastroprotective in rat models of gastritits. Inflamm Bowel Dis. 2008;S14:S14.

    Google Scholar 

  22. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990;98:694–702.

    Google Scholar 

  23. Somersalo K, Salo OP, Bjorksten F, Mustakalio KK. A simplified Boyden chamber assay for neutrophil chemotaxis based on quantitation of myeloperoxidase. Anal Biochem. 1990;185:238–42.

    Article  PubMed  CAS  Google Scholar 

  24. Axelsson LG, Landstrom E, Bylund-Fellenius AC. Experimental colitis induced by dextran sulfate sodium in mice: beneficial effects of sulphasalazine and olsalazine. Aliment Pharmacol Ther. 1998;12:925–34.

    Article  PubMed  CAS  Google Scholar 

  25. Murthy S, Flanigan A. Animal models of inflammatory bowel disease. In: Morgan DW, Marshall LA, editors. In vivo models of inflammation. Basel: Birkhauser-Verlag, 1999. p. 205–29.

  26. Werner U, Szelenyi I. Measurement of MPO activity as model for detection of granulocyte infiltration into different tissues. Inflamm Res. 1992;36:C101–3.

    Google Scholar 

  27. Duggan KA, Mendelsohn FAO, Levens NR. Angiotensin receptors and angiotensin I-converting enzyme in rat intestine. Am J Physiol Gastrointest Liver Physiol. 1989;257:G504–10.

    CAS  Google Scholar 

  28. Paul M, Mehr AP, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86:747–803.

    Article  PubMed  CAS  Google Scholar 

  29. Jaszewski R, Tolia V, Ehrinpreis MN, Bodzin JH, Peleman RR, Korlipara R, et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterol. 1990;98:1543–8.

    CAS  Google Scholar 

  30. Matsuda T, Suzuki J, Furuya K, Masutani M, Kawakami Y. Serum angiotensin I-converting enzyme is reduced in Crohn’s disease and ulcerative colitis irrespective of genotype. Am J Gastroenterol. 2001;96:2705–10.

    Article  PubMed  CAS  Google Scholar 

  31. Katada K, Yoshida N, Suzuki T, Okuda T, Mizushima K, Takagi T, et al. Dextran sulfate sodium-induced acute colonic inflammation in angiotensin II type 1a receptor deficient mice. Inflamm Res. 2008;57:84–91.

    Article  PubMed  CAS  Google Scholar 

  32. Spencer AU, Yang H, Hazhija EQ, Wildhaber BE, Greenson JK, Teitelbaum DH. Reduced severity of a mouse colitis model with angiotensin converting enzyme inhibition. Dig Dis Sci. 2007;52:1060–70.

    Article  PubMed  CAS  Google Scholar 

  33. Santiago OI, Rivera E, Ferder L, Appleyard CB. An angiotensin II receptor antagonist reduces inflammatory parameters in two models of colitis. Regul Pept. 2008;146:250–9.

    Article  PubMed  CAS  Google Scholar 

  34. Ruiz-Ortega M, Lorenzo O, Suzuki Y, Ruperez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10:321–9.

    Article  PubMed  CAS  Google Scholar 

  35. Dagenais NJ, Jamali F. Protective effects of angiotensin II interruption: evidence for anti-inflammatory actions. Pharmacotherapy. 2005;25:1213–29.

    Article  PubMed  CAS  Google Scholar 

  36. Guimaraes S, Pinheiro H. Functional evidence that in the cardiovascular system AT1 angiotensin II receptors are AT1B prejunctionally and AT1A postjunctionally. Cardiovasc Res. 2005;67:208–15.

    Article  PubMed  CAS  Google Scholar 

  37. Georgsson J, Rosenstrom U, Wallinder C, Beaudry H, Plouffe B, Lindeberg G, et al. Short pseudopeptides containing turn scaffolds with high AT2 receptor affinity. Bioorg Med Chem. 2006;14:5963–72.

    Article  PubMed  CAS  Google Scholar 

  38. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264:224–36.

    Article  PubMed  CAS  Google Scholar 

  39. Rosenstrom U, Skold C, Lindeberg G, Botros M, Nyberg F, Hallberg A, et al. Synthesis and AT2 receptor-binding properties of angiotensin II analogues. J Pept Res. 2004;64:194–201.

    Article  PubMed  CAS  Google Scholar 

  40. Han S, Wang G, Qiu S, de la Motte C, Wang HQ, Gomez G, et al. Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul Pept. 2007;142:131–7.

    Article  PubMed  CAS  Google Scholar 

  41. Peracchi M, Bardella MT, Caprioli F, Massironi S, Conte D, Valenti L, et al. Circulating ghrelin levels in patients with inflammatory bowel disease. Gut. 2006;55:432–3.

    Article  PubMed  CAS  Google Scholar 

  42. Sanger GJ. Motilin, ghrelin and related neuropeptides as targets for the treatment of GI diseases. Drug Discov Today. 2008;13:234–9.

    Article  PubMed  CAS  Google Scholar 

  43. Granado M, Priego T, Martin AI, Villanúa MA, López-Calderón A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am J Physiol Endocrinol Metab. 2005;288:486–92.

    Article  CAS  Google Scholar 

  44. Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery. 2008;143:334–42.

    Article  PubMed  Google Scholar 

  45. Brzozowski T, Konturek PC, Konturek SJ, Kwiecien S, Drozdowicz D, Bielanski W, et al. Exogenous and endogenous ghrelin in gastroprotection against stress-induced gastric damage. Regul Pept. 2004;120:39–51.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez-Rey E, Chorny A, Delgado M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology. 2006;130:1707–20.

    Article  PubMed  CAS  Google Scholar 

  47. Lee DK, George SR, O’Dowd BF. Unravelling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. Trends Pharmocol Sci. 2006;27:190–4.

    Article  CAS  Google Scholar 

  48. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, et al. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest. 2008;118:3343–54.

    PubMed  CAS  Google Scholar 

  49. Kleinz MJ, Davenport AP. Emerging roles of apelin in biology and medicine. Pharmacol Ther. 2005;107:198–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Byrnes.

Additional information

Responsible Editor: I. Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrnes, J.J., Gross, S., Ellard, C. et al. Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice. Inflamm. Res. 58, 819–827 (2009). https://doi.org/10.1007/s00011-009-0053-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0053-3

Keywords

Navigation