Skip to main content

Advertisement

Log in

Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

KLF5 (Kruppel-like factor 5) is a basic transcription factor binding to GC boxes at a number of gene promoters and regulating their transcription. KLF5 is expressed during development and, in adults, with higher levels in proliferating epithelial cells. The expression and activity of KLF5 are regulated by multiple signaling pathways, including Ras/MAPK, PKC, and TGFβ, and various posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and sumoylation. Consistently, KLF5 mediates the signaling functions in cell proliferation, cell cycle, apoptosis, migration, differentiation, and stemness by regulating gene expression in response to environment stimuli. The expression of KLF5 is frequently abnormal in human cancers and in cardiovascular disease-associated vascular smooth muscle cells (VSMCs). Due to its significant functions in cell proliferation, survival, and differentiation, KLF5 could be a potential diagnostic biomarker and therapeutic target for cancer and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lania L, Majello B, De Luca P (1997) Transcriptional regulation by the Sp family proteins. Int J Biochem Cell Biol 29:1313–1323

    Article  PubMed  CAS  Google Scholar 

  2. Turner J, Crossley M (1999) Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24:236–240

    Article  PubMed  CAS  Google Scholar 

  3. Dang DT, Pevsner J, Yang VW (2000) The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32:1103–1121

    Article  PubMed  CAS  Google Scholar 

  4. Bieker JJ (2001) Krüppel-like factors: three fingers in many pies. J Biol Chem 276:34355–34358

    Article  PubMed  CAS  Google Scholar 

  5. Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160

    Article  PubMed  CAS  Google Scholar 

  6. Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Kruppel-like transcription factors. Genome Biol 4:206

    Article  PubMed  Google Scholar 

  7. Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85:551–556

    Article  PubMed  CAS  Google Scholar 

  8. Wu J, Lingrel JB (2004) KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene 23:8088–8096

    Article  PubMed  CAS  Google Scholar 

  9. Pandya AY, Talley LI, Frost AR, Fitzgerald TJ, Trivedi V, Chakravarthy M, Chhieng DC, Grizzle WE, Engler JA, Krontiras H, Bland KI, LoBuglio AF, Lobo-Ruppert SM, Ruppert JM (2004) Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 10:2709–2719

    Article  PubMed  CAS  Google Scholar 

  10. Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  PubMed  CAS  Google Scholar 

  11. McConnell BB, Ghaleb AM, Nandan MO, Yang VW (2007) The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29:549–557

    Article  PubMed  CAS  Google Scholar 

  12. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, Glucksman MJ, Narla J, Eng FJ, Chan AM, Ferrari AC, Martignetti JA, Friedman SL (2001) KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294:2563–2566

    Article  PubMed  CAS  Google Scholar 

  13. Chen C, Hyytinen ER, Sun X, Helin HJ, Koivisto PA, Frierson HF, Vessella RL, Dong JT (2003) Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 162:1349–1354

    PubMed  CAS  Google Scholar 

  14. Wang X, Zhao J (2007) KLF8 transcription factor participates in oncogenic transformation. Oncogene 26:456–461

    Article  PubMed  CAS  Google Scholar 

  15. Sogawa K, Imataka H, Yamasaki Y, Kusume H, Abe H, Fujii-Kuriyama Y (1993) cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 21:1527–1532

    Article  PubMed  CAS  Google Scholar 

  16. Kojima S, Kobayashi A, Gotoh O, Ohkuma Y, Fujii-Kuriyama Y, Sogawa K (1997) Transcriptional activation domain of human BTEB2, a GC box-binding factor. J Biochem (Tokyo) 121:389–396

    CAS  Google Scholar 

  17. Conkright MD, Wani MA, Anderson KP, Lingrel JB (1999) A gene encoding an intestinal-enriched member of the Kruppel-like factor family expressed in intestinal epithelial cells. Nucleic Acids Res 27:1263–1270

    Article  PubMed  CAS  Google Scholar 

  18. Shi H, Zhang Z, Wang X, Liu S, Teng CT (1999) Isolation and characterization of a gene encoding human Kruppel-like factor 5 (IKLF): binding to the CAAT/GT box of the mouse lactoferrin gene promoter. Nucleic Acids Res 27:4807–4815

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe N, Kurabayashi M, Shimomura Y, Kawai-Kowase K, Hoshino Y, Manabe I, Watanabe M, Aikawa M, Kuro-o M, Suzuki T, Yazaki Y, Nagai R (1999) BTEB2, a Kruppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/NMHC-B) gene. Circ Res 85:182–191

    PubMed  CAS  Google Scholar 

  20. Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, Haga K, Asaka M, Ramirez F, Yoshida T (2003) Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun 308:251–256

    Article  PubMed  CAS  Google Scholar 

  21. Chiambaretta F, De Graeve F, Turet G, Marceau G, Gain P, Dastugue B, Rigal D, Sapin V (2004) Cell and tissue specific expression of human Kruppel-like transcription factors in human ocular surface. Mol Vis 10:901–909

    PubMed  CAS  Google Scholar 

  22. Yang XO, Doty RT, Hicks JS, Willerford DM (2003) Regulation of T-cell receptor D beta 1 promoter by KLF5 through reiterated GC-rich motifs. Blood 101:4492–4499

    Article  PubMed  CAS  Google Scholar 

  23. Yanagi M, Hashimoto T, Kitamura N, Fukutake M, Komure O, Nishiguchi N, Kawamata T, Maeda K, Shirakawa O (2008) Expression of Kruppel-like factor 5 gene in human brain and association of the gene with the susceptibility to schizophrenia. Schizophr Res 100:291–301

    Article  PubMed  Google Scholar 

  24. Ohnishi S, Laub F, Matsumoto N, Asaka M, Ramirez F, Yoshida T, Terada M (2000) Developmental expression of the mouse gene coding for the Kruppel-like transcription factor KLF5. Dev Dyn 217:421–429

    Article  PubMed  CAS  Google Scholar 

  25. Moore-Scott BA, Opoka R, Lin SC, Kordich JJ, Wells JM (2007) Identification of molecular markers that are expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-gestation. Dev Dyn 236:1997–2003

    Article  PubMed  CAS  Google Scholar 

  26. Du JX, Bialkowska AB, McConnell BB, Yang VW (2008) SUMOylation regulates nuclear localization of Kruppel-like factor 5. J Biol Chem 283:31991–32002

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Z, Teng CT (2003) Phosphorylation of Kruppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function. Nucleic Acids Res 31:2196–2208

    Article  PubMed  CAS  Google Scholar 

  28. Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, Nagai R (2003) Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 23:8528–8541

    Article  PubMed  CAS  Google Scholar 

  29. Matsumura T, Suzuki T, Aizawa K, Munemasa Y, Muto S, Horikoshi M, Nagai R (2005) The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Kruppel-like factor 5 through direct interaction. J Biol Chem 280:12123–12129

    Article  PubMed  CAS  Google Scholar 

  30. Guo P, Dong XY, Zhang X, Zhao KW, Sun X, Li Q, Dong JT (2009) Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. J Biol Chem 284:6071–6078

    Article  PubMed  CAS  Google Scholar 

  31. Chen C, Sun X, Ran Q, Wilkinson KD, Murphy TJ, Simons JW, Dong JT (2005) Ubiquitin-proteasome degradation of KLF5 transcription factor in cancer and untransformed epithelial cells. Oncogene 24:3319–3327

    Article  PubMed  CAS  Google Scholar 

  32. Chen C, Sun X, Guo P, Dong XY, Sethi P, Cheng X, Zhou J, Ling J, Simons JW, Lingrel JB, Dong JT (2005) Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J Biol Chem 280:41553–41561

    Article  PubMed  CAS  Google Scholar 

  33. Chen C, Sun X, Guo P, Dong XY, Sethi P, Zhou W, Zhou Z, Petros J, Frierson HF, Vessella RL, Atfi A, Dong JT (2007) Ubiquitin E3 ligase WWP1 as an oncogenic factor in human prostate cancer. Oncogene 26:2386–2394

    Article  PubMed  CAS  Google Scholar 

  34. Chen C, Zhou Z, Ross JS, Zhou W, Dong JT (2007) The amplified WWP1 gene is a potential molecular target in breast cancer. Int J Cancer 121:80–87

    Article  PubMed  CAS  Google Scholar 

  35. Chen C, Zhou Z, Sheehan CE, Slodkowska E, Sheehan CB, Boguniewicz A, Ross JS (2009) Overexpression of WWP1 is associated with the estrogen receptor and insulin-like growth factor receptor 1 in breast carcinoma. Int J Cancer 124:2829–2836

    Article  PubMed  CAS  Google Scholar 

  36. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  CAS  Google Scholar 

  37. Chen C, Zhou Z, Guo P, Dong JT (2007) Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent pathway. FEBS Lett 581:1124–1130

    Article  PubMed  CAS  Google Scholar 

  38. Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, Maemura K, Kubota N, Kadowaki T, Nagai R (2008) SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med 14:656–666

    Article  PubMed  CAS  Google Scholar 

  39. Du JX, Yun CC, Bialkowska A, Yang VW (2007) Protein inhibitor of activated STAT1 interacts with and up-regulates activities of the pro-proliferative transcription factor Kruppel-like factor 5. J Biol Chem 282:4782–4793

    Article  PubMed  CAS  Google Scholar 

  40. Chen C, Benjamin MS, Sun X, Otto KB, Guo P, Dong XY, Bao Y, Zhou Z, Cheng X, Simons JW, Dong JT (2006) KLF5 promotes cell proliferation and tumorigenesis through gene regulation in the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118:1346–1355

    Article  PubMed  CAS  Google Scholar 

  41. Wan H, Luo F, Wert SE, Zhang L, Xu Y, Ikegami M, Maeda Y, Bell SM, Whitsett JA (2008) Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development 135:2563–2572

    Article  PubMed  CAS  Google Scholar 

  42. Munemasa Y, Suzuki T, Aizawa K, Miyamoto S, Imai Y, Matsumura T, Horikoshi M, Nagai R (2008) Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5. Mol Cell Biol 28:1171–1181

    Article  PubMed  CAS  Google Scholar 

  43. Fujiu K, Manabe I, Ishihara A, Oishi Y, Iwata H, Nishimura G, Shindo T, Maemura K, Kagechika H, Shudo K, Nagai R (2005) Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ Res 97:1132–1141

    Article  PubMed  CAS  Google Scholar 

  44. Sur I, Unden AB, Toftgard R (2002) Human Kruppel-like factor5/KLF5: synergy with NF-kappaB/Rel factors and expression in human skin and hair follicles. Eur J Cell Biol 81:323–334

    Article  PubMed  CAS  Google Scholar 

  45. Zhu N, Gu L, Findley HW, Chen C, Dong JT, Yang L, Zhou M (2006) KLF5 interacts with P53 in regulating survivin expression in acute lymphoblastic leukemia. J Biol Chem 281:14711–14718

    Article  PubMed  CAS  Google Scholar 

  46. Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K (2005) Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1:27–39

    Article  PubMed  CAS  Google Scholar 

  47. Lee MY, Moon JS, Park SW, Koh YK, Ahn YH, Kim KS (2009) KLF5 enhances SREBP-1 action in androgen-dependent induction of fatty acid synthase in prostate cancer cells. Biochem J 417:313–322

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki T, Nishi T, Nagino T, Sasaki K, Aizawa K, Kada N, Sawaki D, Munemasa Y, Matsumura T, Muto S, Sata M, Miyagawa K, Horikoshi M, Nagai R (2007) Functional interaction between the transcription factor Kruppel-like factor 5 and poly(ADP-ribose) polymerase-1 in cardiovascular apoptosis. J Biol Chem 282:9895–9901

    Article  PubMed  CAS  Google Scholar 

  49. Nandan MO, Yoon HS, Zhao W, Ouko LA, Chanchevalap S, Yang VW (2004) Kruppel-like factor 5 mediates the transforming activity of oncogenic H-Ras. Oncogene 23:3404–3413

    Article  PubMed  CAS  Google Scholar 

  50. Kawai-Kowase K, Kurabayashi M, Hoshino Y, Ohyama Y, Nagai R (1999) Transcriptional activation of the zinc finger transcription factor BTEB2 gene by Egr-1 through mitogen-activated protein kinase pathways in vascular smooth muscle cells. Circ Res 85:787–795

    PubMed  CAS  Google Scholar 

  51. Nandan MO, McConnell BB, Ghaleb AM, Bialkowska AB, Sheng H, Shao J, Babbin BA, Robine S, Yang VW (2008) Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 134:120–130

    Article  PubMed  CAS  Google Scholar 

  52. Beckers J, Herrmann F, Rieger S, Drobyshev AL, Horsch M, Hrabe de Angelis M, Seliger B (2005) Identification and validation of novel ERBB2 (HER2, NEU) targets including genes involved in angiogenesis. Int J Cancer 114:590–597

    Article  PubMed  CAS  Google Scholar 

  53. Sun R, Chen X, Yang VW (2001) Intestinal-enriched kruppel-like factor (kruppel-like factor 5) is a positive regulator of cellular proliferation. J Biol Chem 276:6897–6900

    Article  PubMed  CAS  Google Scholar 

  54. Chen C, Zhou Y, Zhou Z, Sun X, Otto KB, Uht RM, Dong JT (2004) Regulation of KLF5 involves the Sp1 transcription factor in human epithelial cells. Gene 330:133–142

    Article  PubMed  CAS  Google Scholar 

  55. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, Takuwa Y (2004) Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem 279:12300–12311

    Article  PubMed  CAS  Google Scholar 

  56. Chanchevalap S, Nandan MO, McConnell BB, Charrier L, Merlin D, Katz JP, Yang VW (2006) Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res 34:1216–1223

    Article  PubMed  CAS  Google Scholar 

  57. Taneyhill L, Pennica D (2004) Identification of Wnt responsive genes using a murine mammary epithelial cell line model system. BMC Dev Biol 4:6

    Article  PubMed  Google Scholar 

  58. Ziemer LT, Pennica D, Levine AJ (2001) Identification of a mouse homolog of the human BTEB2 transcription factor as a beta-catenin-independent Wnt-1-responsive gene. Mol Cell Biol 21:562–574

    Article  PubMed  CAS  Google Scholar 

  59. Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, Kawai-Kowase K, Moriyama N, Imai Y, Kawakami H, Nishimatsu H, Ishikawa T, Suzuki T, Morita H, Maemura K, Sata M, Hirata Y, Komukai M, Kagechika H, Kadowaki T, Kurabayashi M, Nagai R (2002) Kruppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8:856–863

    PubMed  CAS  Google Scholar 

  60. Bafford R, Sui XX, Wang G, Conte M (2006) Angiotensin II and tumor necrosis factor-alpha upregulate survivin and Kruppel-like factor 5 in smooth muscle cells: Potential relevance to vein graft hyperplasia. Surgery 140:289–296

    Article  PubMed  Google Scholar 

  61. Gao D, Niu X, Ning N, Hao G (2006) Regulation of angiotensin II-Induced Kruppel-like factor 5 expression in vascular smooth muscle cells. Biol Pharm Bull 29:2004–2008

    Article  PubMed  CAS  Google Scholar 

  62. Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP, Yang VW, Yun CC (2007) Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 282:15541–15549

    Article  PubMed  CAS  Google Scholar 

  63. Adam PJ, Regan CP, Hautmann MB, Owens GK (2000) Positive- and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem 275:37798–37806

    Article  PubMed  CAS  Google Scholar 

  64. Liu Y, Sinha S, Owens G (2003) A transforming growth factor-beta control element required for SM alpha-actin expression in vivo also partially mediates GKLF-dependent transcriptional repression. J Biol Chem 278:48004–48011

    Article  PubMed  CAS  Google Scholar 

  65. Martinez-Ceballos E, Chambon P, Gudas LJ (2005) Differences in gene expression between wild type and Hoxa1 knockout embryonic stem cells after retinoic acid treatment or leukemia inhibitory factor (LIF) removal. J Biol Chem 280:16484–16498

    Article  PubMed  CAS  Google Scholar 

  66. Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A (2008) Differential regulation of Kruppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: Effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta 1783:1229–1236

    Article  PubMed  CAS  Google Scholar 

  67. Mitko K, Ulbrich SE, Wenigerkind H, Sinowatz F, Blum H, Wolf E, Bauersachs S (2008) Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 135:225–240

    Article  PubMed  CAS  Google Scholar 

  68. Ohara F, Nii A, Sakiyama Y, Tsuchiya M, Ogawa S (2008) Pathophysiological characteristics of dimethylnitrosamine-induced liver fibrosis in acute and chronic injury models: a possible contribution of KLF5 to fibrogenic responses. Dig Dis Sci 53:2222–2232

    Article  PubMed  CAS  Google Scholar 

  69. Kruse JJ, te Poele JA, Russell NS, Boersma LJ, Stewart FA (2004) Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues. Int J Radiat Oncol Biol Phys 58:420–426

    PubMed  CAS  Google Scholar 

  70. Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H (2000) Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J Biol Chem 275:6580–6585

    Article  PubMed  CAS  Google Scholar 

  71. Chiou CC, Chan CC, Sheu DL, Chen KT, Li YS, Chan EC (2001) Helicobacter pylori infection induced alteration of gene expression in human gastric cells. Gut 48:598–604

    Article  PubMed  CAS  Google Scholar 

  72. Mori D, Okuro N, Fujii-Kuriyama Y, Sogawa K (2003) Gene structure and promoter analysis of the rat BTEB2 gene. Gene 304:163–170

    Article  PubMed  CAS  Google Scholar 

  73. Bialkowska AB, Du Y, Fu H, Yang VW (2009) Identification of novel small-molecule compounds that inhibit the proproliferative Kruppel-like factor 5 in colorectal cancer cells by high-throughput screening. Mol Cancer Ther 8:563–570

    Article  PubMed  CAS  Google Scholar 

  74. Chanchevalap S, Nandan MO, Merlin D, Yang VW (2004) All-trans retinoic acid inhibits proliferation of intestinal epithelial cells by inhibiting expression of the gene encoding Kruppel-like factor 5. FEBS Lett 578:99–105

    Article  PubMed  CAS  Google Scholar 

  75. Nandan MO, Chanchevalap S, Dalton WB, Yang VW (2005) Kruppel-like factor 5 promotes mitosis by activating the cyclin B1/Cdc2 complex during oncogenic Ras-mediated transformation. FEBS Lett 579:4757–4762

    Article  PubMed  CAS  Google Scholar 

  76. Yang Y, Goldstein BG, Nakagawa H, Katz JP (2007) Kruppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells. FASEB J 21:543–550

    Article  PubMed  CAS  Google Scholar 

  77. Yang Y, Goldstein BG, Chao HH, Katz JP (2005) KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther 4:1216–1221

    PubMed  CAS  Google Scholar 

  78. Chen C, Bhalala HV, Vessella RL, Dong JT (2003) KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55:81–88

    Article  PubMed  CAS  Google Scholar 

  79. Bateman NW, Tan D, Pestell RG, Black JD, Black AR (2004) Intestinal tumor progression is associated with altered function of KLF5. J Biol Chem 279:12093–12101

    Article  PubMed  CAS  Google Scholar 

  80. Zhao Y, Hamza MS, Leong HS, Lim CB, Pan YF, Cheung E, Soo KC, Iyer NG (2008) Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 27:1–8

    Article  PubMed  CAS  Google Scholar 

  81. Liu R, Zheng HQ, Zhou Z, Dong JT, Chen C (2009) KLF5 promotes breast cell survival partially through FGF-BPpERK-mediated MKP-1 protein phosphorylation and stabilization. J Biol Chem In press

  82. Yang Y, Tetreault MP, Yermolina YA, Goldstein BG, Katz JP (2008) Kruppel-like factor 5 controls keratinocyte migration via the integrin-linked kinase. J Biol Chem 283:18812–18820

    Article  PubMed  CAS  Google Scholar 

  83. Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458

    Article  PubMed  CAS  Google Scholar 

  84. Chen C, Bhalala HV, Qiao H, Dong JT (2002) A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene 21:6567–6572

    Article  PubMed  CAS  Google Scholar 

  85. Sur I, Rozell B, Jaks V, Bergstrom A, Toftgard R (2006) Epidermal and craniofacial defects in mice overexpressing Klf5 in the basal layer of the epidermis. J Cell Sci 119:3593–3601

    Article  PubMed  CAS  Google Scholar 

  86. Walsh K, Takahashi A (2001) Transcriptional regulation of vascular smooth muscle cell phenotype. Z Kardiol 90(Suppl 3):12–16

    PubMed  Google Scholar 

  87. Nagai R, Shindo T, Manabe I, Suzuki T, Kurabayashi M (2003) KLF5/BTEB2, a Kruppel-like zinc-finger type transcription factor, mediates both smooth muscle cell activation and cardiac hypertrophy. Adv Exp Med Biol 538:57–65

    PubMed  CAS  Google Scholar 

  88. Suzuki T, Aizawa K, Matsumura T, Nagai R (2005) Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141

    Article  PubMed  CAS  Google Scholar 

  89. Salazard B, Bellon L, Jean S, Maraninchi M, El-Yazidi C, Orsiere T, Margotat A, Botta A, Berge-Lefranc JL (2004) Low-level arsenite activates the transcription of genes involved in adipose differentiation. Cell Biol Toxicol 20:375–385

    Article  PubMed  CAS  Google Scholar 

  90. Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360

    Article  PubMed  CAS  Google Scholar 

  91. Bruce SJ, Gardiner BB, Burke LJ, Gongora MM, Grimmond SM, Perkins AC (2007) Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC Genomics 8:365

    Article  PubMed  Google Scholar 

  92. Parisi S, Passaro F, Aloia L, Manabe I, Nagai R, Pastore L, Russo T (2008) Klf5 is involved in self-renewal of mouse embryonic stem cells. J Cell Sci 121:2629–2634

    Article  PubMed  CAS  Google Scholar 

  93. Ema M, Mori D, Niwa H, Hasegawa Y, Yamanaka Y, Hitoshi S, Mimura J, Kawabe Y, Hosoya T, Morita M, Shimosato D, Uchida K, Suzuki N, Yanagisawa J, Sogawa K, Rossant J, Yamamoto M, Takahashi S, Fujii-Kuriyama Y (2008) Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3:555–567

    Article  PubMed  CAS  Google Scholar 

  94. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  95. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  96. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  PubMed  CAS  Google Scholar 

  97. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  98. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411–417

    Article  PubMed  CAS  Google Scholar 

  99. Nguyen H, Rendl M, Fuchs E (2006) Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 127:171–183

    Article  PubMed  CAS  Google Scholar 

  100. Shinoda Y, Ogata N, Higashikawa A, Manabe I, Shindo T, Yamada T, Kugimiya F, Ikeda T, Kawamura N, Kawasaki Y, Tsushima K, Takeda N, Nagai R, Hoshi K, Nakamura K, Chung UI, Kawaguchi H (2008) Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9. J Biol Chem 283:24682–24689

    Article  PubMed  CAS  Google Scholar 

  101. McConnell BB, Klapproth JM, Sasaki M, Nandan MO, Yang VW (2008) Kruppel-like factor 5 mediates transmissible murine colonic hyperplasia caused by Citrobacter rodentium infection. Gastroenterology 134:1007–1016

    Article  PubMed  CAS  Google Scholar 

  102. Goldstein BG, Chao HH, Yang Y, Yermolina YA, Tobias JW, Katz JP (2007) Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am J Physiol Gastrointest Liver Physiol 292:G1784–G1792

    Article  PubMed  CAS  Google Scholar 

  103. Knuutila S, Aalto Y, Autio K, Bjorkqvist AM, El-Rifai W, Hemmer S, Huhta T, Kettunen E, Kiuru-Kuhlefelt S, Larramendy ML, Lushnikova T, Monni O, Pere H, Tapper J, Tarkkanen M, Varis A, Wasenius VM, Wolf M, Zhu Y (1999) DNA copy number losses in human neoplasms. Am J Pathol 155:683–694

    PubMed  CAS  Google Scholar 

  104. Dong JT, Boyd JC, Frierson HF Jr (2001) Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49:166–171

    Article  PubMed  CAS  Google Scholar 

  105. Hyytinen ER, Frierson HF, Boyd JC, Chung LW, Dong JT (1999) Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 25:108–114

    Article  PubMed  CAS  Google Scholar 

  106. Dong JT, Chen C, Stultz BG, Isaacs JT, Frierson HF Jr (2000) Deletion at 13q21 is associated with aggressive prostate cancers. Cancer Res 60:3880–3883

    PubMed  CAS  Google Scholar 

  107. Chen C, Brabham WW, Stultz BG, Frierson HF Jr, Barrett JC, Sawyers CL, Isaacs JT, Dong JT (2001) Defining a common region of deletion at 13q21 in human cancers. Genes Chromosomes Cancer 31:333–344

    Article  PubMed  CAS  Google Scholar 

  108. Giefing M, Wierzbicka M, Rydzanicz M, Cegla R, Kujawski M, Szyfter K (2008) Chromosomal gains and losses indicate oncogene and tumor suppressor gene candidates in salivary gland tumors. Neoplasma 55:55–60

    PubMed  CAS  Google Scholar 

  109. Kwak MK, Lee HJ, Hur K, Park do J, Lee HS, Kim WH, Lee KU, Choe KJ, Guilford P, Yang HK (2008) Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 134:163–167

    Article  PubMed  CAS  Google Scholar 

  110. Tong D, Czerwenka K, Heinze G, Ryffel M, Schuster E, Witt A, Leodolter S, Zeillinger R (2006) Expression of KLF5 is a prognostic factor for disease-free survival and overall survival in patients with breast cancer. Clin Cancer Res 12:2442–2448

    Article  PubMed  CAS  Google Scholar 

  111. Chaib H, Cockrell EK, Rubin MA, Macoska JA (2001) Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia (New York) 3:43–52

    CAS  Google Scholar 

  112. Huang D, Gao Q, Guo L, Zhang C, Wei J, Li H, Jing WJ, Han X, Shi Y, Shih Hsin L (2008) Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev 18:465–473

    Article  Google Scholar 

  113. Dardousis K, Voolstra C, Roengvoraphoj M, Sekandarzad A, Mesghenna S, Winkler J, Ko Y, Hescheler J, Sachinidis A (2007) Identification of differentially expressed genes involved in the formation of multicellular tumor spheroids by HT-29 colon carcinoma cells. Mol Ther 15:94–102

    Article  PubMed  CAS  Google Scholar 

  114. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  115. Roberts AB, Wakefield LM (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623

    Article  PubMed  CAS  Google Scholar 

  116. Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E (2007) Loss of TGFbeta Signaling Destabilizes Homeostasis and Promotes Squamous Cell Carcinomas in Stratified Epithelia. Cancer Cell 12:313–327

    Article  PubMed  CAS  Google Scholar 

  117. Nagai R, Suzuki T, Aizawa K, Miyamoto S, Amaki T, Kawai-Kowase K, Sekiguchi KI, Kurabayashi M (2001) Phenotypic modulation of vascular smooth muscle cells: dissection of transcriptional regulatory mechanisms. Ann NY Acad Sci 947:56–66

    PubMed  CAS  Google Scholar 

  118. Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I (2005) Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost 3:1569–1576

    Article  PubMed  CAS  Google Scholar 

  119. Hoshino Y, Kurabayashi M, Kanda T, Hasegawa A, Sakamoto H, Okamoto E, Kowase K, Watanabe N, Manabe I, Suzuki T, Nakano A, Takase S, Wilcox JN, Nagai R (2000) Regulated expression of the BTEB2 transcription factor in vascular smooth muscle cells: analysis of developmental and pathological expression profiles shows implications as a predictive factor for restenosis. Circulation 102:2528–2534

    PubMed  CAS  Google Scholar 

  120. Sakamoto H, Sakamaki T, Kanda T, Hoshino Y, Sawada Y, Sato M, Sato H, Oyama Y, Nakano A, Takase S, Hasegawa A, Nagai R, Kurabayashi M (2003) Smooth muscle cell outgrowth from coronary atherectomy specimens in vitro is associated with less time to restenosis and expression of a key transcription factor KLF5/BTEB2. Cardiology 100:80–85

    Article  PubMed  CAS  Google Scholar 

  121. Ogata T, Kurabayashi M, Hoshino YI, Sekiguchi KI, Kawai-Kowase K, Ishikawa S, Morishita Y, Nagai R (2000) Inducible expression of basic transcription factor-binding protein 2 (BTEB2), a member of zinc finger family of transcription factors, in cardiac allograft vascular disease. Transplantation 70:1653–1656

    Article  PubMed  CAS  Google Scholar 

  122. Wada Y, Suzuki J, Kawauchi M, Kurabayashi M, Tsukioka K, Zhang T, Endoh M, Takayama K, Nagai R, Takamoto S, Isobe M, Amano J (2001) Early growth-response factor 1 and basic transcriptional element-binding protein 2 expression in cardiac allografts. J Heart Lung Transplant 20:590–594

    Article  PubMed  CAS  Google Scholar 

  123. Yao EH, Fukuda N, Ueno T, Tsunemi A, Endo M, Matsumoto K (2008) Complement 3 activates the KLF5 gene in rat vascular smooth muscle cells. Biochem Biophys Res Commun 367:468–473

    Article  PubMed  CAS  Google Scholar 

  124. Kumekawa M, Fukuda G, Shimizu S, Konno K, Odawara M (2008) Inhibition of monocyte chemoattractant protein-1 by Kruppel-like factor 5 small interfering RNA in the tumor necrosis factor-alpha-activated human umbilical vein endothelial cells. Biol Pharm Bull 31:1609–1613

    Article  PubMed  CAS  Google Scholar 

  125. Chen J, Chen H, Sanders KM, Perrino BA (2008) Regulation of SRF/CArG-dependent gene transcription during chronic partial obstruction of murine small intestine. Neurogastroenterol Motil 20:829–842

    Article  PubMed  CAS  Google Scholar 

  126. Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, Chakravarti S (2007) Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis 13:807–821

    Article  PubMed  Google Scholar 

  127. Kada N, Suzuki T, Aizawa K, Munemasa Y, Matsumura T, Sawaki D, Nagai R (2008) Acyclic retinoid inhibits functional interaction of transcription factors Kruppel-like factor 5 and retinoic acid receptor-alpha. FEBS Lett 582:1755–1760

    Article  PubMed  CAS  Google Scholar 

  128. Suzuki T, Sawaki D, Aizawa K, Munemasa Y, Matsumura T, Ishida J, Nagai R (2009) Kruppel-like factor 5 shows proliferation-specific roles in vascular remodeling, direct stimulation of cell growth, and inhibition of apoptosis. J Biol Chem 284:9549–9557

    Article  PubMed  CAS  Google Scholar 

  129. Aizawa K, Suzuki T, Kada N, Ishihara A, Kawai-Kowase K, Matsumura T, Sasaki K, Munemasa Y, Manabe I, Kurabayashi M, Collins T, Nagai R (2004) Regulation of platelet-derived growth factor-A chain by Kruppel-like factor 5: new pathway of cooperative activation with nuclear factor-kappaB. J Biol Chem 279:70–76

    Article  PubMed  CAS  Google Scholar 

  130. Nagai R, Kowase K, Kurabayashi M (2000) Transcriptional regulation of smooth muscle phenotypic modulation. Ann NY Acad Sci 902:214–222 discussion 213-222

    Article  PubMed  CAS  Google Scholar 

  131. Teng C, Shi H, Yang N, Shigeta H (1998) Mouse lactoferrin gene. Promoter-specific regulation by EGF and cDNA cloning of the EGF-response-element binding protein. Adv Exp Med Biol 443:65–78

    PubMed  CAS  Google Scholar 

  132. Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA (2005) A functional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis 35:227–235

    Article  PubMed  CAS  Google Scholar 

  133. Wong WK, Chen K, Shih JC (2001) Regulation of human monoamine oxidase B gene by Sp1 and Sp3. Mol Pharmacol 59:852–859

    PubMed  CAS  Google Scholar 

  134. Shih JC, Chen K (2004) Regulation of MAO-A and MAO-B gene expression. Curr Med Chem 11:1995–2005

    PubMed  CAS  Google Scholar 

  135. Dang DT, Zhao W, Mahatan CS, Geiman DE, Yang VW (2002) Opposing effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 5 (intestinal-enriched Kruppel-like factor) on the promoter of the Kruppel-like factor 4 gene. Nucleic Acids Res 30:2736–2741

    Article  PubMed  CAS  Google Scholar 

  136. Piccinni SA, Bolcato-Bellemin AL, Klein A, Yang VW, Kedinger M, Simon-Assmann P, Lefebvre O (2004) Kruppel-like factors regulate the Lama1 gene encoding the laminin alpha1 chain. J Biol Chem 279:9103–9114

    Article  PubMed  CAS  Google Scholar 

  137. Shao J, Yang VW, Sheng H (2008) Prostaglandin E2 and Kruppel-like transcription factors synergistically induce the expression of decay-accelerating factor in intestinal epithelial cells. Immunology 125:397–407

    Article  PubMed  CAS  Google Scholar 

  138. Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, Xie S, Liu Q, Liu T, Huang J, Xie W, Li Z, Zhao Y, Wang E, Marincola FM, Yao K (2008) Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 6:32

    Article  PubMed  CAS  Google Scholar 

  139. Bloethner S, Chen B, Hemminki K, Muller-Berghaus J, Ugurel S, Schadendorf D, Kumar R (2005) Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26:1224–1232

    Article  PubMed  CAS  Google Scholar 

  140. Guo P, Zhao KW, Dong XY, Sun X, Dong J-T (2009) Acetylation of KLF5 alters the assembly of p15 transcription factors in TGFβ-mediated induction in epithelial cells. J Biol Chem (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Tang Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, JT., Chen, C. Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell. Mol. Life Sci. 66, 2691–2706 (2009). https://doi.org/10.1007/s00018-009-0045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0045-z

Keywords

Navigation