Skip to main content
Log in

The roles of tolerance in the evolution, maintenance and breakdown of mutualism

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Tolerance strategies are cost-reduction mechanisms that enable organisms to recover some of the fitness lost to damage, but impose limited or no cost on antagonists. They are frequently invoked in studies of plant–herbivore and of host–parasite interactions, but the possible roles of tolerance in mutualism (interspecific cooperation) have yet to be thoroughly examined. This review identifies candidate roles for tolerance in the evolution, maintenance and breakdown of mutualism. Firstly, by reducing the cost of damage, tolerance provides a key pathway by which pre-mutualistic hosts can reduce the cost of association with their parasites, promoting cooperation. This holds for the evolution of ‘evolved dependency’ type mutualism, where a host requires an antagonist that does not direct any reward to their partner for some resource, and of ‘outright mutualism’, where participants directly trade benefits. Secondly, in outright mutualism, tolerance might maintain cooperation by reducing the cost of a persisting negative trait in a symbiotic partner. Finally, the evolution of tolerance might also provide a pathway out of mutualism because the host could evolve a cheaper alternative to continued cooperation with its mutualistic partner, permitting autonomy. A key consequence of tolerance is that it contrasts with partner choice mechanisms that impose large costs on cheats, and I highlight understanding any trade-off between tolerance and partner choice as an important research topic in the evolution of cooperation. I conclude by identifying tolerance as part of a more general phenomenon of co-adaptation in mutualism and parasitism that drives the evolution of the cost/benefit ratio from the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aanen DK, Hoekstra RF (2007) The evolution of obligate mutualism: if you can't beat 'em, join 'em. Trends Ecol Evol 22:506–509

    Article  PubMed  Google Scholar 

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:309–313

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Karban R (1997) Domatia mediate plant-arthropod mutualism. Nature 387:562–563

    Article  CAS  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host–bacterial mutualism in the human intestine. Science 211:1390–1396

    Google Scholar 

  • Bergström CT, Bronstein JL, Bshary R, Connor RC, Daly M, Frank SA, Gintis H, Keller L, Leimar O, Noë R, Queller DC (2003) Group report: interspecific mutualism. Puzzles and predictions. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Massachusetts, pp 241–256

    Google Scholar 

  • Bilbrough CJ, Richards JH (1993) Growth of sagebrush and bitterbrush following simulated winter browsing—mechanisms of tolerance. Ecology 74:481–492

    Article  Google Scholar 

  • Boots M (2008) Fight or learn to live with the consequences? Trends Ecol Evol 23:248–250

    Article  PubMed  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  Google Scholar 

  • Brown JH (1983) Interaction and coevolution—Thompson, Jn. Science 220:1043–1043

    Article  PubMed  CAS  Google Scholar 

  • Bshary R, Grutter AS (2002a) Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Anim Behav 63:547–555

    Article  Google Scholar 

  • Bshary R, Grutter AS (2002b) Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: the cleaner fish case. Ecol Letts 5:130–136

    Article  Google Scholar 

  • Bshary R, Schaffer D (2002) Choosy reef fish select cleaner fish that provide high-quality service. Anim Behav 63:557–564

    Article  Google Scholar 

  • Bshary R, Bergmüller R (2008) Distinguishing four fundamental approaches to the evolution of helping. J Evol Biol 21:405–420

    Article  PubMed  CAS  Google Scholar 

  • Bull JJ, Rice WR (1991) Distinguishing mechanisms for the evolution of cooperation. J Theo Biol 149:63–74

    Article  CAS  Google Scholar 

  • Christy JH (1995) Mimicry, mate choice, and the sensory trap hypothesis. Am Nat 146:171–181

    Article  Google Scholar 

  • Clay K (1991) Parasitic castration of plants by fungi. Trends Ecol Evol 6:141–172

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Connor RC (1986) Pseudo-reciprocity—investing in mutualism. Anim Behav 34:1562–1566

    Article  Google Scholar 

  • Connor R (2007) Invested, extracted and byproduct benefits: a modified scheme for the evolution of cooperation. Behav Processes 76:109–113

    Article  PubMed  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant–plant relationships. J Hym Res 2:13–83

    Google Scholar 

  • De Mazancourt C, Loreau M, Dieckmann U (2005) Understanding mutualism when there is adaptation to the partner. J Ecol 93:305–314

    Article  Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualism. Proc Nat Acad Sci U S A 95:8676–8680

    Article  CAS  Google Scholar 

  • Edinger BB (1985) Conditional mutualism in three aphid-tending ants. Bull Ecol Soc Am 66:168

    Google Scholar 

  • Edwards DP, Arauco R, Hassall M, Sutherland WJ, Chamberlain K, Wadhams LJ, Yu DW (2007) Protection in an ant–plant mutualism: an adaptation or a sensory trap? Anim Behav 74:377–385

    Article  Google Scholar 

  • Edwards DP, Yu DW (2007) The roles of sensory traps in the origin, maintenance, and breakdown of mutualism. Behav Ecol Sociobiol 61:1321–1327

    Article  Google Scholar 

  • Edwards DP, Yu DW (2008) Tolerating castration by hiding flowers in plain sight. Behav Ecol Sociobiol 63:95–102

    Article  Google Scholar 

  • Edwards DP, Hassall M, Sutherland WJ, Yu DW (2006) Selection for protection in an ant–plant mutualism: host sanctions, host modularity and the principal-agent game. Proc R Soc Lond B 273:595–602

    Article  Google Scholar 

  • Espinosa EG, Fornoni J (2006) Host tolerance does not impose selection on natural enemies. New Phytologist 170:609–614

    Article  PubMed  Google Scholar 

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    Article  PubMed  Google Scholar 

  • Fay PA, Hartnett DC, Knapp AK (1996) Plant tolerance of gall-insect attack and gall-insect performance. Ecology 77:521–534

    Article  Google Scholar 

  • Fenn K, Baxter M (2004) Are filarial nematode Wolbachia obligate mutualist symbionts? Trends Ecol Evol 19:163–166

    Article  PubMed  Google Scholar 

  • Ferdy JB, Godelle B (2005) Diversification of transmission modes and the evolution of mutualism. Am Nat 166:613–627

    Article  PubMed  Google Scholar 

  • Fischer MK, Shingleton AW (2001) Host plant and ants influence the honeydew sugar composition of aphids. Funct Ecol 15:544–550

    Article  Google Scholar 

  • Fischer MK, Hoffmann KH, Völkl W (2001) Competition for mutualists in an ant–Homopteran interaction mediated by hierarchies of ant attendance. Oikos 92:531–541

    Article  Google Scholar 

  • Fornoni J, Núñez-Farfán J, Valverde PL, Rausher MD (2004) Evolution of mixed strategies of plant defense allocation against natural enemies. Evolution 58:1685–1695

    PubMed  Google Scholar 

  • Foster KR, Wenseleers T (2006) A general model for the evolution of mutualisms. J Evol Biol 19:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Foster WA, Rhoden PK (1998) Soldiers effectively defend aphid colonies against predators in the field. Anim Behav 55:761–765

    Article  PubMed  Google Scholar 

  • Frank SA (1996) Host–symbiont conflict over the mixing of symbiotic lineages. Proc R Soc Lond B 263:339–344

    Article  CAS  Google Scholar 

  • Frank SA (2003) Perspective: repression of competition and the evolution of cooperation. Evolution 57:693–705

    PubMed  Google Scholar 

  • Ghazoul J (2001) Can floral repellents pre-empt potential ant–plant conflicts? Ecol Letts 4:295–299

    Article  Google Scholar 

  • Gronemeyer PA, Dilger BJ, Bouzat JL, Paige KN (1997) The effects of herbivory on paternal fitness in scarlet gilia: better moms also make better pops. Am Nat 150:592–602

    Article  PubMed  CAS  Google Scholar 

  • Grutter AS (2001) Parasite infection rather than tactile stimulation is the proximate cause of cleaning behaviour in reef fish. Proc R Soc Lond B 268:1361–1365

    Article  CAS  Google Scholar 

  • Grutter AS, Bshary R (2003) Cleaner wrasse prefer client mucus: support for partner control mechanisms in cleaning interactions. Proc R Soc Lond B 270:S242–S244

    Article  Google Scholar 

  • Hamilton WD (1964a) The genetical evolution of social behaviour 1. J Theo Biol 7:1–16

    Article  CAS  Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behaviour 2. J Theo Biol 7:17–52

    Article  CAS  Google Scholar 

  • Inouye DW (1983) The ecology of nectar robbing. In: Bentley B, Elias T (eds) The biology of nectarines. Columbia University Press, New York, pp 153–173

    Google Scholar 

  • Janzen DH (1980) When is it coevolution. Evolution 34:611–612

    Article  Google Scholar 

  • Jaremo J, Tuomi J, Nilsson P, Lennartsson T (1999) Plant adaptations to herbivory: mutualistic versus antagonistic coevolution. Oikos 84:313–320

    Article  Google Scholar 

  • Johnstone RA, Bshary R (2008) Mutualism, market effects and partner control. J Evol Biol 21:879–888

    Article  PubMed  CAS  Google Scholar 

  • Keeler KH (1985) Cost:benefit models of mutualism. In: Boucher DH (ed) The biology of mutualism, ecology and evolution. Oxford University Press, England, pp 100–127

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81

    Article  PubMed  CAS  Google Scholar 

  • Koskela T, Puustinen S, Salonen V, Mutikainen P (2002) Resistance and tolerance in a host plant–holoparasitic plant interaction: genetic variation and costs. Evolution 56:899–908

    PubMed  Google Scholar 

  • Leimar O, Connor RC (2003) By-product benefits, reciprocity and pseudoreciprocity in mutualism. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Massachusetts, pp 203–222

    Google Scholar 

  • Leimu R, Koricheva J (2006) A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. Oikos 112:1–9

    Article  Google Scholar 

  • Lennartsson T, Tuomi J, Nilsson P (1997) Evidence for an evolutionary history of overcompensation in the grassland biennial Gentianella campestris (Gentianaceae). Am Nat 149:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Lennartsson T, Nilsson P, Tuomi J (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology 79:1061–1072

    Google Scholar 

  • Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81:2651–2661

    Google Scholar 

  • Mauricio R, Rausher MD, Burdick DS (1997) Variation in the defense strategies of plants: are resistance and tolerance mutually exclusive? Ecology 78:1301–1311

    Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Letts 9:1351–1365

    Article  Google Scholar 

  • Medel R (2001) Assessment of correlational selection on tolerance and resistance traits in a host plant-parasitic plant interaction. Evol Ecol 15:37–52

    Article  Google Scholar 

  • Miller MR, White A, Boots M (2006) The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60:945–956

    PubMed  Google Scholar 

  • Noë R, Hammerstein P (1994) Biological markets—supply-and-demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol 35:1–11

    Article  Google Scholar 

  • Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution or resistance and tolerance to herbivores. Ann Rev Ecol Evol Syst 38:541–566

    Article  Google Scholar 

  • Oliver TH, Leather SR, Cook JM (2009) Tolerance traits and the stability of mutualism. Oikos 118:346–352. doi:10.1111/j.1600-0706.2008.17045.x

    Article  Google Scholar 

  • Paige KN (1999) Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia 118:316–323

    Article  Google Scholar 

  • Paige KN, Whitham TG (1987) Flexible life-history traits—shifts by scarlet gilia in response to pollinator abundance. Ecology 68:1691–1695

    Article  Google Scholar 

  • Pannebakker BA, Loppin B, Elemans CPH, Humblot L, Vavre F (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Nat Acad Sci U S A 104:213–215

    Article  CAS  Google Scholar 

  • Pellmyr O, Huth CJ (1994) Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:257–260

    Article  CAS  Google Scholar 

  • Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814

    Article  PubMed  CAS  Google Scholar 

  • Råberg L, Graham AL, Read AF (2009) Decomposing health: tolerance and resistance to parasites in animals. Phil Trans R Soc Lond B 364:37–49

    Article  Google Scholar 

  • Raine NE, Willmer P, Stone GN (2002) Spatial structuring and floral avoidance behavior prevent ant–pollinator conflict in a Mexican ant-acacia. Ecology 83:3086–3096

    Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist 151:705–716

    Article  Google Scholar 

  • Restif O, Koella JC (2003) Shared control of epidemiological traits in a coevolutionary model of host–parasite interactions. Am Nat 161:827–836

    Article  PubMed  Google Scholar 

  • Restif O, Koella JC (2004) Concurrent evolution of resistance and tolerance to pathogens. Am Nat 164:E90–E102

    Article  PubMed  Google Scholar 

  • Richardson SC (2004a) Are nectar-robbers mutualists or antagonists? Oecologia 139:246–254

    Article  PubMed  Google Scholar 

  • Richardson SC (2004b) Benefits and costs of floral visitors to Chilopsis linearis: pollen deposition and stigma closure. Oikos 107:363–375

    Article  Google Scholar 

  • Rosenthal JP, Kotanen PM (1994) Terrestrial plant tolerance to herbivory. Trends Ecol Evol 9:145–148

    Article  Google Scholar 

  • Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63

    PubMed  CAS  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Quart Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JM, Addicott JF (2003) Regulation of moth-yucca mutualisms: mortality of eggs in oviposition-induced ‘damage zones’. Ecol Letts 6:440–447

    Article  Google Scholar 

  • Shingleton AW, Foster WA (2000) Ant tending influences soldier production in a social aphid. Proc R Soc Lond B 267:1863–1868

    Article  CAS  Google Scholar 

  • Siepielski AM, Benkman CW (2007) Extreme environmental variation sharpens selection that drives the evolution of a mutualism. Proc R Soc Lond B 274:1799–1805

    Article  Google Scholar 

  • Simms EL, Triplett J (1994) Costs and benefits of plant-responses to disease-resistance and tolerance. Evolution 48:1973–1985

    Article  Google Scholar 

  • Smithson A, Gigord LD (2003) The evolution of empty flowers revisited. Am Nat 161:537–552

    Article  PubMed  Google Scholar 

  • Stinchcombe JR (2002) Can tolerance traits impose selection on herbivores? Evol Ecol 16:595–602

    Article  Google Scholar 

  • Stowe KA, Marquis RJ, Hochwender CG, Simms EL (2000) The evolutionary ecology of tolerance to consumer damage. Ann Rev Ecol Syst 31:565–595

    Article  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    Article  PubMed  Google Scholar 

  • Stradler B, Dixon AFG (2005) Ecology and evolution of aphid–ant interactions. Ann Rev Ecol Syst 36:345–372

    Article  Google Scholar 

  • Takeda S, Kinomura K, Sakurai H (1982) Effects of ant-attendance on the honeydew excretion and larviposition of the cowpea aphid. Appl Entomol Zool 17:133–135

    Google Scholar 

  • Thompson JN (1982) Interaction and coevolution. Wiley, New York

    Google Scholar 

  • Thompson JN, Cunningham BM (2002) Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P (2000) Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? Am Nat 155:128–138

    Article  PubMed  Google Scholar 

  • Wambua S, Mwangi TW, Kortok M, Uyoga SM, Macharia AW, Mwacharo JK, Weatherall DJ, Snow RW, Marsh K, Williams TN (2006) The effect of alpha(+)-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. Plos Med 3:643–651

    Article  Google Scholar 

  • Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Ann Rev Entomol 8:307–344

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Current Biol 17:R661–R672

    Article  CAS  Google Scholar 

  • West SA, Kiers ET, Pen I, Denison RF (2002a) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J Evol Biol 15:830–837

    Article  Google Scholar 

  • West SA, Kiers ET, Simms EL, Denison RF (2002b) Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc R Soc Lond B 269:685–694

    Article  Google Scholar 

  • Wise MJ, Cummins JJ (2006) Strategies of Solanum carolinense for regulating maternal investment in response to foliar and floral herbivory. J Ecol 94:629–636

    Article  Google Scholar 

  • Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    Article  PubMed  CAS  Google Scholar 

  • Yao I, Akimoto S (2001) Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:36–43

    Article  Google Scholar 

  • Yao I, Akimoto S (2002) Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol Entomol 27:745–752

    Article  Google Scholar 

  • Yao I, Shibao H, Akimoto S (2000) Costs and benefits of ant attendance to the drepanosiphid aphid Tuberculatus quercicola. Oikos 89:3–10

    Article  Google Scholar 

  • Yu DW (2001) Parasites of mutualisms. Biol J Linn Soc 72:529–546

    Article  Google Scholar 

  • Yu DW, Wilson HB, Pierce NE (2001) An empirical model of species coexistence in a spatially structured environment. Ecology 82:1761–1771

    Article  Google Scholar 

  • Yu DW, Pierce NE (1998) A castration parasite of an ant-plant mutualism. Proc R Soc Lond B 265:375–382

    Article  Google Scholar 

  • Yu DW, Ridley J, Jousselin E, Herre EA, Compton SG, Cook JM, Moore JC, Weiblen GD (2004a) Oviposition strategies, host coercion and the stable exploitation of figs by wasps. Proc R Soc Lond B 271:1185–1195

    Article  Google Scholar 

  • Yu DW, Wilson HB, Frederickson ME, Palomino W, De la Colina R, Edwards DP, Balareso AA (2004b) Experimental demonstration of species coexistence enabled by dispersal limitation. J Anim Ecol 73:1102–1114

    Article  Google Scholar 

Download references

Acknowledgements

I thank Kevin Foster, Douglas Yu, Tom Fayle, William Foster and two anonymous referees for comments and discussions that have greatly improved the manuscript and the Leverhulme Trust for a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, D.P. The roles of tolerance in the evolution, maintenance and breakdown of mutualism. Naturwissenschaften 96, 1137–1145 (2009). https://doi.org/10.1007/s00114-009-0559-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-009-0559-0

Keywords

Navigation