Skip to main content
Log in

Differential dopaminergic modulation of executive control in healthy subjects

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Executive control (EC) has different subcomponents, e.g., response inhibition (measured, for example, by the Stroop task) and working memory (WM—measured, for example, by delayed response tasks, DRT). EC has been associated with networks involving the prefrontal cortex (PFC). Moreover, there is evidence that dopamine agonists, especially those with a D1 profile, may modulate EC, since in the PFC D1 subtype receptors are more abundant.

Objective

This study aimed to selectively distinguish whether D1 versus D2 dopamine agonism differentially influences EC related to the inhibition of irrelevant information and WM. Because of its D1 component, we predicted that the administration of pergolide (mixed D1/D2 agonist), in comparison with bromocriptine (D2 selective agonist) and placebo, would enhance performance in both EC tasks. Using a lateralized Stroop task, we predicted a decrease in the interference effect, as well as error rates, while no increase in facilitation effects. For the DRT task, we predicted fewer error scores in the delay condition.

Methods

Forty male healthy subjects participated in this randomized, double-blind, placebo-controlled, crossover study.

Results

For the Stroop task no superiority of pergolide was found; however, with bromocriptine, decreased interference was found. No modulation of lateralization effects was shown in interference measures. Moreover, subjects on pergolide showed an absence of facilitation effects. No effects of either agonist were found for the DRT.

Conclusion

Our findings suggest that dopamine agonists modulate two EC tasks differently. Furthermore, there seems to be a selective modulation of different aspects of the Stroop task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aine CJ, Harter MR (1984) Hemispheric differences in event-related potentials to stroop stimuli. Attention and color-word processing. Ann NY Acad Sci 425:154–156

    CAS  PubMed  Google Scholar 

  • Arnsten AF (1997) Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11:151–162

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 116:143–151

    CAS  Google Scholar 

  • Barch DM, Carter CS, Perlstein W, Baird J, Cohen JD, Schooler N (1999) Increased stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophr Res 39:51–64

    Article  CAS  PubMed  Google Scholar 

  • Bartholomeusz CF, Box G, Van Rooy C, Nathan PJ (2003) The modulatory effects of dopamine D1 and D2 receptor function on object working memory in humans. J Psychopharmacol 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Bliss EL, Ailion J (1971) Relationship of stress and activity to brain dopamine and homovanillic acid. Life Sci I 10:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Brickenkamp R (1981) Test d2 Aufmerksamkeits-Belastungs-Test, 7th edn. Verlag für Psychologie (Hogrefe), Göttingen

    Google Scholar 

  • Carter CS, Robertson LC, Nordahl TE (1992) Abnormal processing of irrelevant information in chronic schizophrenia: selective enhancement of Stroop facilitation. Psychiatry Res 41:137–146

    Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287

    CAS  PubMed  Google Scholar 

  • Cohen JD, Servan-Schreiber D (1992) Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychol Rev 99:45–77

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Doherty SM, Jordan N, Tidswell P, Sullivan EV (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. Brain 115:1701–1725

    PubMed  Google Scholar 

  • Daniel E, Weinberger D, Goldberg T et al (1991) Effect of amphetamine on regional blood flow during cognitive activation in schizophrenia. J Neurosci 11:1907–1917

    CAS  PubMed  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750

    Google Scholar 

  • Dyer F (1973) Stroop phenomenon and its use in the study of perceptual, cognitive, and response processes. Mem Cogn 1:106–120

    Google Scholar 

  • Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ (1996) Local and distributed effects of apomorphine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 16:7055–7062

    CAS  PubMed  Google Scholar 

  • Goldberg TE, Egan MF, Gscheidle T et al (2003) Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60:889–896

    Article  CAS  PubMed  Google Scholar 

  • Gotham AM, Brown RG, Marsden CD (1988) “Frontal” cognitive function in patients with Parkinson’s disease “on” and “off” levodopa. Brain 111:299–321

    PubMed  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    CAS  PubMed  Google Scholar 

  • Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994): Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 11:245–256

    Google Scholar 

  • Henik A, Singh J, Beckley D, Rafal R (1991) Disinhibition of automatic word reading in Parkinsons’s disease. J Clin Exp Neuropsychol 14:81

    Google Scholar 

  • Kimberg DY, D’Esposito M (2003) Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia 41:1020–1027

    Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585

    CAS  PubMed  Google Scholar 

  • Kulisevsky J, Garcia-Sanchez C, Berthier ML et al (2000) Chronic effects of dopaminergic replacement on cognitive function in Parkinson’s disease: a two-year follow-up study of previously untreated patients. Mov Disord 15:613–626

    Article  CAS  PubMed  Google Scholar 

  • Larsson L-E, Ägren G, Hughdahl K (1983) Outline and description of an electronic system for laterlaisation of visual stimuli in studies of hemispheric asymmetry. Scand J Psychol 24:267–275

    CAS  PubMed  Google Scholar 

  • Lehrl S (1977) Mehrfach-Wortschatz-Intelligenztest MWT-B. Straube, Erlangen

    Google Scholar 

  • Levi-Minzi S, Bermanzohn PC, Siris SG (1991) Bromocriptine for “Negative Schizophrenia”. Compr Psychiatry 32:210–216

    Article  CAS  PubMed  Google Scholar 

  • Liddle PF, Morris DL (1991) Schizophrenic syndromes and frontal lobe performance. Br J Psychiatry 158:340–345

    CAS  PubMed  Google Scholar 

  • Lidow M, Goldman-Rakic P, Gallager D, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using (H3) raclopide, (H3) spiperone and (H3) SCH23390. Neuroscience 40:657–671

    Google Scholar 

  • Luciana M, Collins PF (1997) Dopaminergic modulation of working memory for spatial but not for object cues in normal humans. J Cogn Neurosci 4:58–68

    Google Scholar 

  • Luciana M, Depue RA, Arbisi P, Leon A (1992) Facilitation of working memory in humans by a D2 dopamine receptor agonist. J Cogn Neurosci 4:58–68

    Google Scholar 

  • Mac Leod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol Bull 109:163–203

    Article  CAS  PubMed  Google Scholar 

  • Markela-Lerenc J, Ille N, Kaiser S, Fiedler P, Mundt C, Weisbrod M (2004) Prefrontal-cingulate activation during executive control: which comes first? Cogn Brain Res 18:278–287

    Article  Google Scholar 

  • Markham A, Benfield P (1997) Pergolide: a review of its pharmacology and therapeutic use in Parkinson’s disease. CNS Drugs 7:328–340

    CAS  Google Scholar 

  • McDowell S, Whyte J, D’Esposito M (1998) Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain 121(Pt 6):1155–1164

    Article  PubMed  Google Scholar 

  • Müller U, Yves D, Pollman S (1998) D1-versus D2-receptor modulation of visual spatial working memory in humans. J Neurosci 18:2720–2728

    PubMed  Google Scholar 

  • Norman DA, Shallice T (1986) Attention to action: willed and automatic control of behavior. In: Davidson RJ, Schwartz GE, Shapiro D (eds) Consciousness and self-regulation. Plenum, New York, pp 1–18

    Google Scholar 

  • Oertel W, Quinn N (1996) Parkinsonism. In: Brandt T, Caplan L, Dichgans J, Diener H, Kennard C (eds) Neurological disorders: course and treatment. Academic, San Diego, pp 715–772

    Google Scholar 

  • Ohmori T, Koyama T, Inoue T, Matsubara S, Yamashita I (1993) B-HT 920, a dopamine D2 agonist, in the treatment of negative symptoms of chronic schizophrenia. Biol Psychiatry 33:687–693

    Article  CAS  PubMed  Google Scholar 

  • Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Beksinska M, James M, Lange KW, Summers BA, Leigh PN (1991) Dopamine dependent spatial working memory deficits in Parkinson’s disease. Soc Neurosci Abstr 17:1261

    Google Scholar 

  • Pillon B, Gouider-Khouja N, Deweer B et al (1995) Neuropsychological pattern of striatonigral degeneration: comparison with Parkinson’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 58:174–191

    CAS  PubMed  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138

    Article  CAS  PubMed  Google Scholar 

  • Roesch-Ely D (2002) Normal and disordered thought in schizophrenia. Dissertation, Experimental Psychopathology, Heidelberg

  • Royall DR, Lauterbach EC, Cummings JL et al (2002) Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 14:377–405

    Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    CAS  PubMed  Google Scholar 

  • Schmit V, Davis R (1974) The role of hemispheric specialization in the analysis of Stroop stimuli. Acta Psycologica 38:149–158

    Article  CAS  Google Scholar 

  • Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913

    CAS  PubMed  Google Scholar 

  • Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638

    CAS  PubMed  Google Scholar 

  • Spitzer M (1993) The psychopathology, neuropsychology, and neurobiology of associative and working memory in schizophrenia. Eur Arch Psychiatry Clin Neurosci 243:5–70

    Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Google Scholar 

  • Tsao Y, Feustel T, Soseos C (1979) Stroop interference in the right and left visual fields. Brain Lang 8:367–371

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke TM (2001) Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog Neurobiol 63:241–320

    Article  CAS  PubMed  Google Scholar 

  • Velhagen K, Broschmann D (1995) Tafeln zur Prüfung des Farbensinnes, 30th edn. Georg Thieme, Stuttgart

    Google Scholar 

  • Wachtel H (1991) Antiparkinsonian dopamine agonists: a review of the pharmacokinetics and neuropharmacology in animals and humans. J Neural Transm Park Dis Dement Sect 3:151–201

    CAS  PubMed  Google Scholar 

  • Weinberger DR (2003) Dopamine, the prefrontal cortex, and a genetic mechanism of schizophrenia. In: Lecrubier Y and Kapur S (eds) Dopamine in the pathophysiology and treatment of schizophrenia. Martin Dunitz, London, pp 129–154

    Google Scholar 

  • Williams G, Goldman-Rakic P (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:549–550

    Article  PubMed  Google Scholar 

  • World Health Organisation, Health DoM (1992) Schedules for Clinical Assessment in Neuopsychiatry, SCAN

  • van Zerssen D, Koeller DM (1976) Befindlichkeitsskala (Bf-S). Beltz, Weinheim

    Google Scholar 

Download references

Acknowledgments

We thank Lilly Deutschland, GmbH, for providing financial support in participation fees. We thank Dr. M. Karr and Dr. J. Unger for helping to screen the volunteers. We also gratefully acknowledge Dr. C. Mohr and Dr. U. Müller for reviewing the manuscript and critically commenting on the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Roesch-Ely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roesch-Ely, D., Scheffel, H., Weiland, S. et al. Differential dopaminergic modulation of executive control in healthy subjects. Psychopharmacology 178, 420–430 (2005). https://doi.org/10.1007/s00213-004-2027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2027-z

Keywords

Navigation