Skip to main content
Log in

Detection of bacteria by surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported.

Light scattering apparatus used to detect bacteria

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pan YL, Holler S, Chang RK, Hill SC, Pinnick RG, Niles S, Bottiger JR (1999) Opt Lett 24:116–118

    CAS  Google Scholar 

  2. Hugo WB, Russell AD (1998) Pharmaceutical microbiology, 6th edn. Blackwell, Oxford

    Google Scholar 

  3. Pellegrino PM, Fell NF, Gillespie JB (2002) Anal Chem Acta 455:167–177

    Article  CAS  Google Scholar 

  4. Thompson SE, Forster NS, Johnson T J, Valentine NB, Amonette JE (2003) Appl Spectrosc 57:893–899

    Article  CAS  Google Scholar 

  5. Chan JW, Esposito AP, Talley CE, Hollars CW, Lane SM, Huser T (2004) Anal Chem 76:599–603

    Article  CAS  Google Scholar 

  6. Laucks ML, Roll G, Schweiger G, Davis EJ (2000) J Aerosol Sci 31:307–319

    Article  CAS  Google Scholar 

  7. Billman J, Kovacs G, Otto A (1979) Surface Sci 92:153–173

    Article  Google Scholar 

  8. Liao PF, Bergman JG, Chemla DS, Wokaun A, Melngailis J, Hawryluk AM, Economou NP (1981) Chem Phys Lett 82:355–359

    Article  CAS  Google Scholar 

  9. Jackson JB, Halas NJ (2004) Proc Nat Aca Sci 101:17930–17935

    Article  CAS  Google Scholar 

  10. Andersen PC, Rowlen KL (2002) Appl Spectrosc 56:124A–135A

    Article  CAS  Google Scholar 

  11. Holt RE, Cotton TM (1989) J Am Chem Soc 111:2815–2821

    Article  CAS  Google Scholar 

  12. Efrima S, Bronk BV (1998) J Phys Chem B 102:5947–5950

    Article  CAS  Google Scholar 

  13. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Appl Spectrosc 58:33–40

    Article  CAS  Google Scholar 

  14. Jarvis RM, Goodacre R (2004) Anal Chem 76:40–47

    Article  CAS  Google Scholar 

  15. Jarvis RM, Brooker A, Goodacre R (2004) Anal Chem 76:5198–5202

    Article  CAS  Google Scholar 

  16. Sengupta A, Laucks ML, Dildrine N, Drapala E, Davis EJ (2005) J Aerosol Sci 36:651–664

    Article  CAS  Google Scholar 

  17. Sengupta A, Laucks ML, Davis EJ (2005) Appl Spectrosc 59:1016–1023

    Article  CAS  Google Scholar 

  18. Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Appl Spectrosc 59:1222–1228

    Article  CAS  Google Scholar 

  19. Moskovits M, Michaelian KH (1978) J Chem Phys 69:2306–2311

    Article  CAS  Google Scholar 

  20. Montoya JR, Armstrong RL, Smith GB (2003) Proc SPIE 5085:144–152

    Article  CAS  Google Scholar 

  21. Keir R, Sadler D, Smith WE (2002) Appl Spectrosc 56:551–559

    Article  CAS  Google Scholar 

  22. Spiro TG, Gaber BP (1977) Ann Rev Biochem 46:533–572

    Google Scholar 

  23. Moriis MC, Beinstock RJ (1986) Spectroscopy of biological systems. Wiley, New York, pp 395–442

    Google Scholar 

  24. Bragg PD, Rainnie J (1974) Can J Microbiol 20:883–889

    Article  CAS  Google Scholar 

  25. Menitove JE (2003) (ed) Blood Bulletin. 6:December 1–2

    Google Scholar 

  26. Zhang X, Young MA, Lyandres O, Van Duyne RP (2005) J Am Chem Soc 127:4484–4489

    Article  CAS  Google Scholar 

  27. Katz A, Alimova A, Xu M, Rudolph E, Shah, MK, Savage HE, Rosen RB, McCormick SA (2003) IEEE J Sel Top Quantum Electron 9:277–287

    Article  CAS  Google Scholar 

  28. Van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New York

    Google Scholar 

  29. Weast RC (1984) (ed) Handbook of chemistry and physics, 65th edn. CRC Press, Boca Raton, Florida

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professors Daniel T. Schwartz and François Baneyx for their interest and advice. The contributions of Daniel Allred in Professor Schwartz’s laboratory and undergraduate researcher Tian Huang are highly appreciated. The authors would also like to thank the National Science Foundation for Grant Number CTS-9982413, the University of Washington/PNNL Joint Institute for Nanotechnology, and the University of Washington Center for Nanotechnology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanu Sengupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, A., Mujacic, M. & Davis, E.J. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 386, 1379–1386 (2006). https://doi.org/10.1007/s00216-006-0711-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0711-z

Keywords

Navigation