Skip to main content

Advertisement

Log in

High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Molecular approaches aimed at detection of a broad-range of prokaryotes in the environment routinely rely on classifying heterogeneous 16S rRNA genes amplified by polymerase chain reaction (PCR) using primers with broad specificity. The general method of sampling and categorizing DNA has been to clone then sequence the PCR products. However, the number of clones required to adequately catalog the majority of taxa in a sample is unwieldy. Alternatively, hybridizing target sequences to a universal 16S rRNA gene microarray may provide a more rapid and comprehensive view of prokaryotic community composition. This study investigated the breadth and accuracy of a microarray in detecting diverse 16S rRNA gene sequence types compared to clone-and-sequencing using three environmental samples: urban aerosol, subsurface soil, and subsurface water. PCR products generated from universal 16S rRNA gene-targeted primers were classified by using either the clone-and-sequence method or by hybridization to a novel high-density microarray of 297,851 probes complementary to 842 prokaryotic subfamilies. The three clone libraries comprised 1391 high-quality sequences. Approximately 8% of the clones could not be placed into a known subfamily and were considered novel. The microarray results confirmed the majority of clone-detected subfamilies and additionally demonstrated greater amplicon diversity extending into phyla not observed by the cloning method. Sequences matching operational taxonomic units within the phyla Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified with specific primers and subsequent amplicon sequencing. Subfamily richness detected by the array corresponded well with nonparametric richness predictions extrapolated from clone libraries except in the water community where clone-based richness predictions were greatly exceeded. It was concluded that although the microarray is unreliable in identifying novel prokaryotic taxa, it reveals greater diversity in environmental samples than sequencing a typically sized clone library. Furthermore, the microarray allowed samples to be rapidly evaluated with replication, a significant advantage in studies of microbial ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bach, HJ, Tomanova, J, Schloter, M, Munch, JC (2002) Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J Microbiol Methods 49: 235–245

    Article  PubMed  CAS  Google Scholar 

  2. Castiglioni, B, Rizzi, E, Frosini, A, Sivonen, K, Rajaniemi, P, Rantala, A, Mugnai, MA, Ventura, S, Wilmotte, A, Boutte, C, Grubisic, S, Balthasart, P, Consolandi, C, Bordoni, R, Mezzelani, A, Battaglia, C, De Bellis, G (2004) Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70: 7161–7172

    Article  PubMed  CAS  Google Scholar 

  3. Chandler, DP, Jarrell, AE (2005) Taking arrays from the lab to the field: trying to make sense of the unknown. BioTechniques 38: 591–600

    Article  PubMed  CAS  Google Scholar 

  4. Chao, A (1984) Non-parametric estimation of the number of classes in a population. Scand J Statist 11: 265–270

    Google Scholar 

  5. Chao, S, Lee, AM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87: 210–217

    Article  Google Scholar 

  6. Chee, M, Yang, R, Hubbell, E, Berno, A, Huang, XC, Stern, D, Winkler, J, Lockhart, DJ, Morris, MS, Fodor, SP (1996) Accessing genetic information with high-density DNA arrays. Science 274: 610–614

    Article  PubMed  CAS  Google Scholar 

  7. Chouari, R, Le Paslier, D, Dauga, C, Daegelen, P, Weissenbach, J, Sghir, A (2005) Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol 71: 2145–2153

    Article  PubMed  CAS  Google Scholar 

  8. Crocetti, GR, Hugenholtz, P, Bond, PL, Schuler, A, Keller, J, Jenkins, D, Blackall, LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66: 1175–1182

    Article  PubMed  CAS  Google Scholar 

  9. DeSantis, TZ, Dubosarskiy, I, Murray, SR, Andersen, GL (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19: 1461–1468

    Article  PubMed  CAS  Google Scholar 

  10. DeSantis, TZ, Hugenholtz, P, Keller, K, Brodie, EL, Larsen, N, Piceno, YM, Phan, R, Andersen, GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34: W394–399

    Google Scholar 

  11. DeSantis, TZ, Hugenholtz, P, Larsen, N, Rojas, M, Brodie, EL, Keller, K, Huber, T, Dalevi, D, Hu, P, Andersen, GL (2006) Greengenes, a chimera-checked 16S rRNA genes database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072

    Google Scholar 

  12. DeSantis, TZ, Stone, CE, Murray, SR, Moberg, JP, Andersen, GL (2005) Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiol Lett 245: 271–278

    Article  PubMed  CAS  Google Scholar 

  13. Dojka, MA, Hugenholtz, P, Haack, SK, Pace, NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64: 3869–3877

    PubMed  CAS  Google Scholar 

  14. Dunbar, J, Barns, SM, Ticknor, LO, Kuske, CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68: 3035–3045

    Article  PubMed  CAS  Google Scholar 

  15. Elshahed, MS, Senko, JM, Najar, FZ, Kenton, SM, Roe, BA, Dewers, TA, Spear, JR, Krumholz, LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69: 5609–5621

    Article  PubMed  CAS  Google Scholar 

  16. Ewing, B, Green, P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194

    PubMed  CAS  Google Scholar 

  17. Ewing, B, Hillier, L, Wendl, MC, Green, P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185

    PubMed  CAS  Google Scholar 

  18. Farrelly, V, Rainey, FA, Stackebrandt, E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798–2801

    PubMed  CAS  Google Scholar 

  19. Felsenstein, J (1989) PHYLIP—Phylogeny Inference Package (Version 3.65). Cladistics 5: 164–166

    Google Scholar 

  20. Felske, A, Akkermans, AD (1998) Prominent occurrence of ribosomes from an uncultured bacterium of the Verrucomicrobiales cluster in grassland soils. Lett Appl Microbiol 26: 219–223

    Article  PubMed  CAS  Google Scholar 

  21. Gans, J, Wolinsky, M, Dunbar, J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387–1390

    Article  PubMed  CAS  Google Scholar 

  22. Garrity, GM (2001) Bergey's Manual of Systematic Bacteriology, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  23. Ginige, MP, Hugenholtz, P, Daims, H, Wagner, M, Keller, J, Blackall, LL (2004) Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70: 588–596

    Article  PubMed  CAS  Google Scholar 

  24. Holmes, DE, Finneran, KT, O'Neil, RA, Lovley, DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68: 2300–2306

    Article  PubMed  CAS  Google Scholar 

  25. Huber, T, Faulkner, G, Hugenholtz, P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319

    Article  PubMed  CAS  Google Scholar 

  26. Hugenholtz, P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3: 1–8

    Article  Google Scholar 

  27. Hugenholtz, P, Goebel, BM, Pace, NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180: 4765–4774

    PubMed  CAS  Google Scholar 

  28. Hugenholtz, P, Huber, T (2003) Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53: 289–293

    Article  CAS  Google Scholar 

  29. Hugenholtz, P, Tyson, GW, Webb, RI, Wagner, AM, Blackall, LL (2001) Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 67: 411–419

    Article  PubMed  CAS  Google Scholar 

  30. Hughes, JB, Hellmann, JJ, Ricketts, TH, Bohannan, BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399–4406

    Article  PubMed  CAS  Google Scholar 

  31. Junca, H, Pieper, DH (2004) Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6: 95–110

    Article  PubMed  CAS  Google Scholar 

  32. Kazor, CE, Mitchell, PM, Lee, AM, Stokes, LN, Loesche, WJ, Dewhirst, FE, Paster, BJ (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41: 558–563

    Article  PubMed  CAS  Google Scholar 

  33. Kelly, JJ, Siripong, S, McCormack, J, Janus, LR, Urakawa, H, El Fantroussi, S, Noble, PA, Sappelsa, L, Rittmann, BE, Stahl, DA (2005) DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Res 39: 3229–3238

    Article  PubMed  CAS  Google Scholar 

  34. Kent, AD, Smith, DJ, Benson, BJ, Triplett, EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69: 6768–6776

    Article  PubMed  CAS  Google Scholar 

  35. Lane, DJ (1991) Nucleic acid techniques in bacterial systematics. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics, Vol 1. Wiley, New York, pp 115–175

    Google Scholar 

  36. Lanser, JA, Adams, M, Doyle, R, Sangster, N, Steele, TW (1990) Genetic relatedness of Legionella longbeachae isolates from human and environmental sources in Australia. Appl Environ Microbiol 56: 2784–2790

    PubMed  CAS  Google Scholar 

  37. Lehner, A, Loy, A, Behr, T, Gaenge, H, Ludwig, W, Wagner, M, Schleifer, KH (2005) Oligonucleotide microarray for identification of Enterococcus species. FEMS Microbiol Lett 246: 133–142

    Article  PubMed  CAS  Google Scholar 

  38. Lindstrom, UM, Kool, ET (2002) An orthogonal oligonucleotide protecting group strategy that enables assembly of repetitive or highly structured DNAs. Nucleic Acids Res 30: e101

    Article  PubMed  Google Scholar 

  39. Liu, WT, Stahl, DA (2002) Molecular approaches for the measurement of density, diversity, and phylogeny. In: Hurst, CJ, Crawford, RL, Knudsen, GR, McInerney, MJ, Stetzenbach, LD (Eds.) Manual of Environmental Microbiology, 2nd edn., pp 114–134

  40. Loy, A, Lehner, A, Lee, N, Adamczyk, J, Meier, H, Ernst, J, Schleifer, KH, Wagner, M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68: 5064–5081

    Article  PubMed  CAS  Google Scholar 

  41. Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Forster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, Konig, A, Liss, T, Lussmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371

    Article  PubMed  CAS  Google Scholar 

  42. Lueders, T, Friedrich, M (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66: 2732–2742

    Article  PubMed  CAS  Google Scholar 

  43. Magurran, AE (1988) Ecological Diversity and Its Measurement. Princeton University Press, Princeton, NJ

    Google Scholar 

  44. Masuda, N, Church, GM (2002) Escherichia coli gene expression responsive to levels of the response regulator EvgA. J Bacteriol 184: 6225–6234

    Article  PubMed  CAS  Google Scholar 

  45. McCaig, AE, Glover, LA, Prosser, JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65: 1721–1730

    PubMed  CAS  Google Scholar 

  46. Miller, DN, Bryant, JE, Madsen, EL, Ghiorse, WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715–4724

    PubMed  CAS  Google Scholar 

  47. Ohara, O, Temple, G (2001) Directional cDNA library construction assisted by the in vitro recombination reaction. Nucleic Acids Res 29: E22

    Article  PubMed  CAS  Google Scholar 

  48. Polz, MF, Cavanaugh, CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64: 3724–3730

    PubMed  CAS  Google Scholar 

  49. Rosch, C, Bothe, H (2005) Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71: 2026–2035

    Article  PubMed  CAS  Google Scholar 

  50. Rozen, S, Skaletsky, H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386

    PubMed  CAS  Google Scholar 

  51. Schloss, PD, Handelsman, J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501–1506

    Article  PubMed  CAS  Google Scholar 

  52. Schloss, PD, Handelsman, J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68: 686–691

    Article  PubMed  Google Scholar 

  53. Schmidt, TM, DeLong, EF, Pace, NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371–4378

    PubMed  CAS  Google Scholar 

  54. Skowronski, EW, Armstrong, N, Andersen, G, Macht, M, McCready, PM (2000) Magnetic, microplate-format plasmid isolation protocol for high-yield, sequencing-grade DNA. BioTechniques 29: 786–788, 790, 792

    Google Scholar 

  55. Torsvik, V, Daae, FL, Sandaa, RA, Ovreas, L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64: 53–62

    Article  PubMed  CAS  Google Scholar 

  56. Urakawa, H, Noble, PA, El Fantroussi, S, Kelly, JJ, Stahl, DA (2002) Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses. Appl Environ Microbiol 68: 235–244

    Article  PubMed  CAS  Google Scholar 

  57. Wan, J, Tokunaga, TK, Brodie, E, Wang, Z, Zheng, Z, Herman, D, Hazen, TC, Firestone, MK, Sutton, SR (2005) Reoxidation of bioreduced uranium under reducing conditions. Environ Sci Technol 39: 6162–6169

    Article  PubMed  CAS  Google Scholar 

  58. Warsen, AE, Krug, MJ, LaFrentz, S, Stanek, DR, Loge, FJ, Call, DR (2004) Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays. Appl Environ Microbiol 70: 4216–4221

    Article  PubMed  CAS  Google Scholar 

  59. Webster, G, Newberry, CJ, Fry, JC, Weightman, AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55: 155–164

    Article  PubMed  CAS  Google Scholar 

  60. Wilson, KH, Blitchington, RB, Greene, RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction [published erratum appears in J Clin Microbiol 1991 Mar; 29(3): 666]. J Clin Microbiol 28: 1942–1946

    PubMed  CAS  Google Scholar 

  61. Wilson, KH, Wilson, WJ, Radosevich, JL, DeSantis, TZ, Viswanathan, VS, Kuczmarski, TA, Andersen, GL (2002) High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68: 2535–2541

    Article  PubMed  CAS  Google Scholar 

  62. Wilson, WJ, Strout, CL, DeSantis, TZ, Stilwell, JL, Carrano, AV, Andersen, GL (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16: 119–127

    Article  PubMed  CAS  Google Scholar 

  63. Wu, L, Thompson, DK, Li, G, Hurt, RA, Tiedje, JM, Zhou, J (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67: 5780–5790

    Article  PubMed  CAS  Google Scholar 

  64. Zhou, J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6: 288–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Phil Hugenholtz and Dr. Paul Richardson of the Joint Genome Institute for assistance in constructing the clone libraries. We acknowledge the expert technical assistance of Sonya Murray, Richard Phan, Mark Rojas, and Ramine Cromartie-Thornton. Computational support was provided through the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov). This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231, and was funded in part by the Department of Homeland Security under grant number HSSCHQ04X00037 and in part by the Department of Energy, Environmental Remediation Sciences Program (ERSP) and the Genomics: GTL program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSantis, T.Z., Brodie, E.L., Moberg, J.P. et al. High-Density Universal 16S rRNA Microarray Analysis Reveals Broader Diversity than Typical Clone Library When Sampling the Environment. Microb Ecol 53, 371–383 (2007). https://doi.org/10.1007/s00248-006-9134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9134-9

Keywords

Navigation