Skip to main content
Log in

Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET) with 11C-5-hydroxytryptophan (5-HTP) as tracer is a promising imaging instrument in the management of patients with neuroendocrine tumours (NETs). However, high radioactivity concentrations in the urinary collecting system sometimes produce image reconstruction artefacts that can make detection of small NETs difficult. As a means to decrease urinary excretion of radioactivity and thereby improve image quality, we examined the effect of pretreatment with carbidopa (CD), a peripheral inhibitor of aromatic amino acid decarboxylase (AADC), which converts 5-HTP to serotonin (5-hydroxytryptamine, 5-HT).

Methods

Six patients with midgut carcinoid metastases were examined with 11C-5-HTP PET before and 1 h after oral administration of 100 or 200 mg of CD.

Results

There was a fourfold significant reduction of tracer uptake in the urinary collecting system after CD administration (p=0.0277, n=6), with a mean standard uptake value (SUV) of 155±195 before CD and 39±14 after CD. In tumour lesions there was a significant increase in SUV after CD administration (p<0. 0001, n=18), with a mean SUV of 11±3 before CD and 14±3 after CD. There was no difference between the doses (100 and 200 mg) of CD in this respect. In all patients, image interpretation and tumour detection were markedly improved after CD administration.

Conclusion

We conclude that CD premedication improves 11C-5-HTP PET image quality and facilitates detection of NET lesions. Because of the similarity of metabolic pathways, this method could probably be applied to improve PET imaging using other tracers like 18F-DOPA and 11C-DOPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pearse AGE. The APUD concept and hormone production. Clin Endocrinol Metab 1980;9:211–22

    PubMed  Google Scholar 

  2. Norheim I, Oberg K, Theodorsson-Norheim E, Lindgren PG, Lundqvist G, Magnusson A, et al. Malignant carcinoid tumors; an analysis of 103 patients with regard to tumor location, hormone production and survival. Ann Surg 1987;206:115–25

    PubMed  Google Scholar 

  3. Eriksson B, Arnberg H, Lindgren PG, Lorelius LE, Magnusson A, Lundqvist G, et al. Clinical presentation, biochemical and histopathological findings in 84 patients with neuroendocrine pancreatic tumors. J Intern Med 1990;228:103–13

    PubMed  Google Scholar 

  4. Kwekkeboom DJ, Krenning EP. Somatostatin receptor scintigraphy in patients with carcinoid tumors. World J Surg 1996;20:157–61

    Article  PubMed  Google Scholar 

  5. Lebtahi R, Cadiot G, Sarda L, Daou D, Faraggi M, Petegnief Y, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. J Nucl Med 1997;38:853–8

    PubMed  Google Scholar 

  6. Ahlstrom H, Eriksson B, Bergstrom M, Bjurling P, Langstrom B, Oberg K. Pancreatic neuroendocrine tumors—diagnosis with PET. Radiology 1995;195:333–7

    PubMed  Google Scholar 

  7. Orlefors H, Sundin A, Bjurling P, Bergstrom M, Lilja A, Langstrom B, et al. Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. J Clin Oncol 1998;16:2534–41

    PubMed  Google Scholar 

  8. Zieger MA, Schawker TH, Norton JA. Use of intraoperative ultrasonography to localize islet cell tumors. World J Surg 1993;17:448–54

    Article  PubMed  Google Scholar 

  9. Zimmer T, Stolzel U, Bader M, Koppenhagen K, Hamm B, Buhr H, et al. Gut endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localization of insulinomas and gastrinomas. Gut 1996;39:562–8

    PubMed  Google Scholar 

  10. Orlefors H, Sundin A, Garske U, Juhlin K, Oberg K, Skogseid B, et al. Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 2005;90:3392–400

    Article  PubMed  Google Scholar 

  11. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and theraphy. J Nucl Med 2000;41:1704–13

    PubMed  Google Scholar 

  12. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of 18F-fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 1998;25:79–83

    Article  PubMed  Google Scholar 

  13. Sundin A, Eriksson B, Bergstrom M, Bjurling P, Lindner KJ, Oberg K, et al. Demonstration of 11C-5-hydroxy-L-tryptophan uptake and decarboxylation in carcinoid tumors by specific positioning labeling in PET. Nucl Med Biol 2000;27:33–41

    Article  PubMed  Google Scholar 

  14. Bergstrom M, Eriksson B, Oberg K, Sundin A, Ahlstrom H, Lindner KJ, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of 11C-DOPA to 11C-dopamine. J Nucl Med 1996;1:32–7

    Google Scholar 

  15. Rahman MK, Nagatsu T, Kato T. Aromatic L-aminoacid decarboxylase activity in central and peripheral tissues and serum of rats with L-dopa and L-5-hydroxytryptophan as substrates. Biochem Pharmacol 1981;30:645–9

    Article  PubMed  Google Scholar 

  16. Bjurling P, Antoni G, Watanabe Y, Langstrom B. Enzymatic synthesis of carboxy-11C-labelled L-tyrosine, L-DOPA, L-tryptophan and 5-hydroxytryptophan. Acta Chem Scand 1990;44:178–82

    Google Scholar 

  17. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 1983;3:1–7

    PubMed  Google Scholar 

  18. Bergstrom M, Lu L, Eriksson B, Marques M, Bjurling P, Andersson Y, et al. Modulation of organ uptake of 11C-labelled 5-hydroxy-tryptophan. Biogenic Amines 1996;12:477–85

    Google Scholar 

  19. Sole MJ, Madapallimattam A, Baines AD. An active pathway for serotonin synthesis by renal proximal tubules. Kidney Int 1986;29:689–94

    PubMed  Google Scholar 

  20. Itskovitz HD, Werber JL, Sheridan AM, Brewer TF, Stier CT. 5-Hydroxytryptophan and carbidopa in spontaneously hypertensive rats. J Hypertens 1989;7:311–5

    PubMed  Google Scholar 

  21. Sundin A, Johansson A, Hellman P, Bergstrom M, Ahlstrom H, Jacobsson G.B, et al. PET and parathyroid L-11C-methionine accumulation in hyperparathyroidism. J Nucl Med 1996;37:1766–70

    PubMed  Google Scholar 

  22. Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, et al. Whole-body 18F-Dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001;220:373–80

    PubMed  Google Scholar 

  23. Bergstrom M, Eriksson B, Oberg K, Sundin A, Ahlstrom H, Lindner KJ, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of 11C-DOPA to 11C-dopamine. J Nucl Med 1996;37:32–7

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Foundation, Lions Cancer Fund and Soderbergs Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Örlefors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Örlefors, H., Sundin, A., Lu, L. et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33, 60–65 (2006). https://doi.org/10.1007/s00259-005-1891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1891-z

Keywords

Navigation