Skip to main content

Advertisement

Log in

Assembly of the phagocyte NADPH oxidase

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Stimulated phagocytes undergo a burst in respiration whereby molecular oxygen is converted to superoxide anion through the action of an NADPH-dependent oxidase. The multicomponent phagocyte oxidase is unassembled and inactive in resting cells but assembles at the plasma or phagosomal membrane upon phagocyte activation. Oxidase components include flavocytochrome b558, an integral membrane heterodimer comprised of gp91phox and p22phox, and three cytosolic proteins, p47phox, p67phox, and Rac1 or Rac2, depending on the species and phagocytic cell. In a sense, the phagocyte oxidase is spatially regulated, with critical elements segregated in the membrane and cytosol but ready to undergo nearly immediate assembly and activation in response to stimulation. To achieve such spatial regulation, the individual components in the resting phagocyte adopt conformations that mask potentially interactive structural domains that might mediate productive intermolecular associations and oxidase assembly. In response to stimulation, post-translational modifications of the oxidase components release these constraints and thereby render potential interfaces accessible and interactive, resulting in translocation of the cytosolic elements to the membrane where the functional oxidase is assembled and active. This review summarizes data on the structural features of the phagocyte oxidase components and on the agonist-dependent conformational rearrangements that contribute to oxidase assembly and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c

Similar content being viewed by others

References

  • Abo A, Pick E (1991) Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages. J Biol Chem 266:23577–23585

    CAS  PubMed  Google Scholar 

  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670

    Article  CAS  PubMed  Google Scholar 

  • Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298:585–591

    CAS  PubMed  Google Scholar 

  • Aderem A, Underhill D (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Nunoi H, Ito T, Sumimoto H (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47phox. J Biol Chem 274:33644–33653

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Takeya R, Hiroaki H, Kuribayashi F, Ito T, Kohda D, Sumimoto H (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287:733–738

    Article  CAS  PubMed  Google Scholar 

  • Ago T, Kuribayashi F, Hiroaki H, Takeya R, Ito T, Kohda D, Sumimoto H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 100:4474–4479

    Article  CAS  PubMed  Google Scholar 

  • Agwu DE, McPhail LC, Sozzani S, Bass DA, McCall CE (1991) Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase. J Clin Invest 88:531–539

    CAS  PubMed  Google Scholar 

  • Allen L-AH, DeLeo FR, Gallois A, Toyoshima S, Suzuki K, Nauseef WM (1999) Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 93:3521–3530

    CAS  PubMed  Google Scholar 

  • Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E (2001) Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67phox and the small GTPase Rac1. Biochemistry 40:14557–14566

    Article  CAS  PubMed  Google Scholar 

  • Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 9:4654–4659

    Article  Google Scholar 

  • Ando S, Kaibuchi K, Sasaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y, Polakis P, McCormick F, Takai Y (1992) Post-translational processing of rac p21 s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 267:25709–25713

    CAS  PubMed  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    CAS  PubMed  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  CAS  PubMed  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM, Lazdins JK, Briggs RT, Karnovsky MJ, Karnovsky ML (1980) Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases. J Cell Physiol 105:541–551

    CAS  PubMed  Google Scholar 

  • Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836

    CAS  PubMed  Google Scholar 

  • Baehner RL, Nathan DG (1968) Quantitative nitro blue tetrazolium test in chronic granulomatous disease. N Engl J Med 278:971–976

    CAS  PubMed  Google Scholar 

  • Baldridge C, Gerard R (1933) The extra respiration of phagocytosis. Am J Physiol 103:235–236

    CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  CAS  PubMed  Google Scholar 

  • Berthier S, Paclet MH, Lerouge S, Roux F, Vergnaud S, Coleman AW, Morel F (2003) Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation. J Biol Chem 278:25499–25508

    Article  CAS  PubMed  Google Scholar 

  • Biberstine-Kinkade KJ, Yu L, Dinauer MC (1999) Mutagenesis of an arginine- and lysine-rich domain in the gp91phox subunit of the phagocyte NADPH-oxidase flavocytochrome b558. J Biol Chem 274:10451–10457

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692–2696

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM, Bohl BP, Chuang T-H (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem 269:31674–31679

    CAS  PubMed  Google Scholar 

  • Borregaard N, Tauber AI (1984) Subcellular localization of the human neutrophil NADPH oxidase: b-cytochrome and associated flavoprotein. J Biol Chem 259:47–52

    CAS  PubMed  Google Scholar 

  • Borregaard N, Heiple JM, Simons ER, Clark RA (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:52–61

    Article  CAS  PubMed  Google Scholar 

  • Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood. Am J Dis Child 97:387–408

    CAS  Google Scholar 

  • Bromberg Y, Pick E (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260:13539–13545

    CAS  PubMed  Google Scholar 

  • Brown GE, Stewart MQ, Liu H, Ha VL, Yaffe MB (2003) A novel assay system implicates PtdIns(3,4)P2, PtdIns(3)P, and PKCd in intracellular production of reactive oxygen species by the NADPH oxidase. Mol Cell 11:35–47

    Article  CAS  PubMed  Google Scholar 

  • Burritt JB, Quinn MT, Jutila MA, Bond CW, Doss KW, Jesaitis AJ (1994) Random sequence peptide library analysis of neutrophil flavocytochrome B structure (abstract). Mol Biol Cell 5:121a

    Google Scholar 

  • Burritt JB, Quinn MT, Bond CW, Bond CW, Jesaitis AJ (1995) Topological mapping of neutrophil cytochrome b with phage display. J Biol Chem 270:16974–16980

    Article  CAS  PubMed  Google Scholar 

  • Burritt JB, Busse SC, Gizachew D, Siemsen DW, Quinn MT, Bond CW, Dratz EA, Jesaitis AJ (1998) Antibody imprint of a membrane protein surface. J Biol Chem 273:24847–24852

    Article  CAS  PubMed  Google Scholar 

  • Burritt JB, DeLeo FR, McDonald CL, Prigge JR, Dinauer MC, Nakamura M, Nauseef WM, Jesaitis AJ (2001) Phage display epitope mapping of human neutrophil flavocytochrome b558. J Biol Chem 276:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Burritt JB, Foubert TR, Baniulis D, Lord CI, Taylor RM, Mills JS, Baughan TD, Roos D, Parkos CA, Jesaitis AJ (2003) Functional epitope on human neutrophil flavocytochrome b558. J Immunol 170:6082–6089

    CAS  PubMed  Google Scholar 

  • Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736

    Article  CAS  PubMed  Google Scholar 

  • Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human neutrophils: subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074

    CAS  PubMed  Google Scholar 

  • Cross A (2000) p40phox participates in the activation of NADPH oxidase by increasing the affinity of p47phox for flavocytochrome b558. Biochem J 349:113–117

    Article  CAS  PubMed  Google Scholar 

  • Cross AR, Erickson RW, Curnutte JT (1999) The mechanism of activation of NADPH oxidase in the cell-free system: the activation process is primarily catalytic and not through the formation of a stoichiometric complex. Biochem J 341:251–255

    Article  CAS  PubMed  Google Scholar 

  • Cross AR, Noack D, Rae J, Curnutte JT, Heyworth PG (2000) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (first update). Blood Cells Mol Dis 26:561–565

    Article  CAS  PubMed  Google Scholar 

  • Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75:1740–1743

    CAS  PubMed  Google Scholar 

  • Dang P, Cross A, Babior B (2001) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci U S A 98:3001–3005

    Article  CAS  PubMed  Google Scholar 

  • Dang PM-C, Cross AR, Quinn MT, Babior BM (2002) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci U S A 99:4262–4265

    Article  CAS  PubMed  Google Scholar 

  • Dang PMC, Morel F, Gougerot-Pocidalo MA, El Benna J (2003) Phosphorylation of the NADPH oxidase component p67PHOX by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42:4520–4526

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • DeLeo FR, Quinn MT (1996) Assembly of the phagocyte NADPH oxidase: molecular interactions of oxidase proteins. J Leukoc Biol 60:677–691

    PubMed  Google Scholar 

  • DeLeo FR, Nauseef WM, Jesaitis AJ, Burritt JB, Clark RA, Quinn MT (1995a) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270:26246–26251

    Article  CAS  PubMed  Google Scholar 

  • DeLeo FR, Yu L, Burritt JB, Loetterle LR, Bond CW, Jesaitis AJ, Quinn MT (1995b) Mapping sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci U S A 92:7110–7114

    CAS  PubMed  Google Scholar 

  • DeLeo FR, Allen L-AH, Apicella MA, Nauseef WM (1999) NADPH oxidase activation and assembly during phagocytosis. J Immunol 163:6732–6740

    CAS  PubMed  Google Scholar 

  • de Mendez I, Adams AG, Sokolic RA, Malech HL, Leto TL (1996) Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J 15:1211–1220

    PubMed  Google Scholar 

  • de Mendez I, Homayounpour N, Leto TL (1997) Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol Cell Biol 17:2177–2184

    PubMed  Google Scholar 

  • Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schöni MH, Blaser K, Simon HU (1999) Cytokine-mediated bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci U S A 96:13330–13335

    Article  CAS  PubMed  Google Scholar 

  • Diebold B, Bokoch G (2001) Molecular basis for Rac2 regulation of phagocytic NADPH oxidase. Nat Immunol 2:211–215

    Article  CAS  PubMed  Google Scholar 

  • Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–534

    CAS  PubMed  Google Scholar 

  • Diekmann D, Nobes CD, Burbelo PD, Abo A, Hall A (1995) Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J 14:5297–5305

    CAS  PubMed  Google Scholar 

  • Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720

    Article  CAS  PubMed  Google Scholar 

  • Dinauer MC, Nauseef WM, Newburger PE (2001) Inherited disorders of phagocyte killing. In: Scriver CR, Beaudet, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited diseases. McGraw-Hill, New York, pp 4857–4887

  • Dorseuil O, Quinn MT, Bokoch GM (1995) Dissociation of Rac translocation from p47phox/p67phox movements in human neutrophils by tyrosine kinase inhibitors. J Leukoc Biol 58:108–113

    CAS  PubMed  Google Scholar 

  • Doussiere J, Bouzidi F, Vignais PV (2002) The S100A8/A9 protein as a partner for the cytosolic factors of NADPH oxidase activation in neutrophils. Eur J Biochem 269:3246–3255

    Article  CAS  PubMed  Google Scholar 

  • Downing JF, Pasula R, Wright JR, Twigg HL III, Martin WJ II (1995) Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci U S A 92:4848–4852

    CAS  PubMed  Google Scholar 

  • Dusi S, Rossi F (1993) Activation of NADPH oxidase of human neutrophils involves the phosphorylation and the translocation of cytosolic p67phox. Biochem J 296:367–371

    CAS  PubMed  Google Scholar 

  • Dusi S, Donini M, Rossi F (1996) Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox. Biochem J 314:409–412

    CAS  PubMed  Google Scholar 

  • Dusi S, Nadalini KA, Donini M, Zentilin L, Wientjes FB, Roos D, Giacca M, Rossi F (1998) Nicotinamide-adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol 161:4968–4974

    CAS  PubMed  Google Scholar 

  • Ebisu K, Nagasawa T, Watanabe K, Kakinuma K, Miyano K, Tamura M (2001) Fused p47phox and p67phox truncations efficiently reconstitute NADPH oxidase with higher activity and stability than the individual components. J Biol Chem 276:24498–24505

    Article  CAS  PubMed  Google Scholar 

  • El Benna J, Dang PMC, Gaudry M, Fay M, Morel F, Hakim J, Gougerot-Pocidalo M-A (1997) Phosphorylation of the respiratory burst oxidase subunit p67phox during human neutrophil activation. J Biol Chem 272:17204–17208

    Article  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Forbes LV, Moss SJ, Segal AW (1999a) Phosphorylation of p67phox in the neutrophil occurs in the cytosol and is independent of p47phox. FEBS Lett 449:225–229

    Google Scholar 

  • Forbes LV, Truong O, Wientjes FB, Moss SJ, Segal AW (1999b) The major phosphorylation site of the NADPH oxidase component p67phox is Thr233. Biochem J 338:99–105

    Article  CAS  PubMed  Google Scholar 

  • Foubert TR, Burritt JB, Taylor RM, Jesaitis AJ (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS, and arachidonate: intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b558. Biochim Biophys Acta 78380:1–11

    Google Scholar 

  • Freeman JL, Abo A, Lambeth JD (1996) Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem 271:19794–19801

    Article  CAS  PubMed  Google Scholar 

  • Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E (2001a) The active N-terminal region of p67phox. J Biol Chem 276:21627–21631

    Article  CAS  PubMed  Google Scholar 

  • Grizot S, Grandvaux N, Fieschi F, Fauré J, Massenet C, Andrieu JP, Fuchs A, Vignais PV, Timmins PA, Dagher MC, Pebay-Peyroula E (2001b) Small angle neutron scattering and gel filtration analyses of neutrophil NADPH oxidase cytosolic factors highlight the role of the C-terminal end of p47phox in the association with p40phox. Biochemistry 40:3127–3133

    Article  CAS  PubMed  Google Scholar 

  • Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  PubMed  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  • Han C-H, Freeman JLR, Lee T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory oxidase. J Biol Chem 273:16663–16668

    Article  CAS  PubMed  Google Scholar 

  • Hata K, Takeshige K, Sumimoto H (1997) Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun 241:226–231

    Article  CAS  PubMed  Google Scholar 

  • Hata K, Ito T, Takeshige K, Sumimoto H (1998) Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox both in C-terminally truncated forms. J Biol Chem 273:4232–4236

    Article  CAS  PubMed  Google Scholar 

  • Heller T, Gessner JE, Schmidt RE, Klos A, Bautsch W, Kohl J (1999) Cutting edge: Fc receptor type I for IgG on macrophages and complement mediate the inflammatory response in immune complex peritonitis. J Immunol 162:5657–5661

    CAS  PubMed  Google Scholar 

  • Heyneman RA, Vercauteren RE (1984) Activation of an NADPH-dependent oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukoc Biol 36:751–759

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991a) Neutrophil NADPH oxidase assembly. Membrane translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991b) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Knaus UG, Settleman J, Curnutte JT, Bokoch GM (1993) Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 4:1217–1223

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269:30749–30752

    CAS  PubMed  Google Scholar 

  • Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15:578–584

    Article  CAS  PubMed  Google Scholar 

  • Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D (2001) Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol 8:526–530

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann GR, Nassar N, Cerione RA (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100:345–356

    Article  PubMed  Google Scholar 

  • Holmes B, Quie P, Windhorst D, Good R (1966) Fatal granulomatous disease of childhood. Lancet 1:1225–1228

    Article  CAS  PubMed  Google Scholar 

  • Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432

    CAS  PubMed  Google Scholar 

  • Hoyal CR, Gutierrez A, Young BM, Catz SD, Lin JH, Tsichlis PN, Babior BM (2003) Modulation of p47phox activity by site-specific phosphorylation: akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci U S A 100:5130–5135

    Article  CAS  PubMed  Google Scholar 

  • Inanami O, Johnson JL, McAdara JK, El Benna J, Faust LRP, Newburger PE, Babior BM (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273:9539–9543

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Matsui Y, Ago T, Ota K, Sumimoto H (2001) Novel modular domain PB1 recognizes PC motif to mediate functional protein–protein interactions. EMBO J 20:1–9

    Article  PubMed  Google Scholar 

  • Iyer GYN, Islam DMF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    CAS  Google Scholar 

  • Iyer SS, Pearson DW, Nauseef WM, Clark RA (1994) Evidence for a readily dissociable complex of p47phox and p67phox in cytosol of unstimulated human neutrophils. J Biol Chem 269:22405–22411

    CAS  PubMed  Google Scholar 

  • Jandl RC, Andre-Schwartz J, Borges-DuBois L, Kipnes RS, McMurrich BJ, Babior BM (1978) Termination of the respiratory burst in human neutrophils. J Clin Invest 61:1176–1185

    CAS  PubMed  Google Scholar 

  • Johnson JL, Park J-W, El Benna J, Faust LP, Inanami O, Babior BM (1998) Activation of p47phox, a cytosolic subunit of the leukocyte NADPH oxidase. J Biol Chem 273:35147–35152

    Article  CAS  PubMed  Google Scholar 

  • Johnston RB Jr, McMurry J (1967) Chronic granulomatous disease: a report of five cases and a review of the literature. Am J Dis Child 114:370–379

    PubMed  Google Scholar 

  • Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PXXP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J 21:4268–4276

    Article  CAS  PubMed  Google Scholar 

  • Kanai F, Liu H, Field S, Akbary H, Matsuo T, Brown G, Cantley L, Yaffe M (2000) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678

    Article  Google Scholar 

  • Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho WW, Williams RL (2002) Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  CAS  PubMed  Google Scholar 

  • Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 4:49–60

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff SJ (1970) Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science 169:1095–1097

    CAS  PubMed  Google Scholar 

  • Kleinberg ME, Malech HL, Mital DA, Leto TL (1994) p21rac does not participate in the early interaction between p47-phox and cytochrome b558 that leads to phagocyte NADPH oxidase activation in vitro. Biochemistry 33:2490–2495

    CAS  PubMed  Google Scholar 

  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515

    CAS  PubMed  Google Scholar 

  • Knaus UG, Heyworth PG, Kinsella BT, Curnutte JT, Bokoch GM (1992) Purification and characterization of Rac 2. J Biol Chem 267:23575–23582

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Robinson JM, Seguchi H (1998) Identification of intracellular sites of superoxide production in stimulated neutrophils. J Cell Sci 111:81–91

    CAS  PubMed  Google Scholar 

  • Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  CAS  PubMed  Google Scholar 

  • Kreck ML, Freeman JL, Abo A, Lambeth JD (1996) Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry 35:15683–15692

    Article  CAS  PubMed  Google Scholar 

  • Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T, Sumimoto H (2002) The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21:6312–6320

    Article  CAS  PubMed  Google Scholar 

  • Kurkchubasche AG, Panepinto JA, Tracy TR, Thurman GW, Ambruso DR (2001) Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr 139:141–147

    Article  CAS  PubMed  Google Scholar 

  • Kwong CH, Adams AG, Leto TL (1995) Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 270:19868–19872

    Article  CAS  PubMed  Google Scholar 

  • Lambeth J (2000) Regulation of the phagocyte respiratory burst oxidase by protein interactions. J Biochem Mol Biol 33:427–439

    CAS  Google Scholar 

  • Lang ML, Kerr MA (2000) Neutrophil NADPH oxidase does not assemble on macropinocytic vacuole membranes. Immunol Lett 72:1–6

    Article  CAS  PubMed  Google Scholar 

  • Lapouge K, Smith SJM, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac-GTP. Mol Cell 6:899–907

    CAS  PubMed  Google Scholar 

  • Lapouge K, Smith SJM, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. J Biol Chem 277:10121–10128

    Article  CAS  PubMed  Google Scholar 

  • Le A, Steiner JL, Ferrell GA, Shaker JC, Sifers RN (1994) Association between calnexin and a secretion-incompetent variant of human a1-antitrypsin. J Biol Chem 269:7514–7519

    CAS  PubMed  Google Scholar 

  • Le Cabec V, Möhn H, Gacon G, Maridonneau-Parini I (1994) The small GTP-binding protein rac is not recruited to the plasma membrane upon NADPH oxidase activation in human neutrophils. Biochem Biophys Res Commun 198:1216–1224

    Article  PubMed  Google Scholar 

  • Lekstrom-Himes J, Gallin J (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343:1703–1714

    Article  CAS  PubMed  Google Scholar 

  • Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JMG, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67 K neutrophil cytosolic factor and its similarity to a noncatalytic region of p60c-src. Science 248:727–730

    CAS  PubMed  Google Scholar 

  • Leusen JHW, Bolscher BGJM, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, Roos D, Verhoeven AJ (1994a) 156Pro–Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med 180:2329–2334

    Article  CAS  PubMed  Google Scholar 

  • Leusen JHW, De Boer M, Bolscher BGJM, Hilarius PM, Weening RS, Ochs HD, Roos D, Verhoeven AJ (1994b) A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Clin Invest 93:2120–2126

    CAS  PubMed  Google Scholar 

  • Leusen JHW, De Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CIE, Diekmann D, Hall A, Verhoeven AJ, Roos D (1996) Distrubed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 184:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Leusen JHW, Eppink MHM, Hilarius PM, De Boer M, Weening RS, Ahlin A, Sanders L, Goldblatt D, Skopczynska H, Bernatowska E, Palmblad J, Verhoeven AJ, van Berkel WJH, Roos D (2000) Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly. Blood 95:666–673

    CAS  PubMed  Google Scholar 

  • Maly FE, Schuerer-Maly CC, Quilliam L, Cochrane CG, Newburger PE, Curnutte JT, Gifford M, Dinauer MC (1993) Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A220 CGD)-derived B lymphocyte cell lines by transfection with p22phox cDNA. J Exp Med 178:2047–2053

    Article  CAS  PubMed  Google Scholar 

  • McPhail LC, Shirley PS, Clayton CC, Snyderman R (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: evidence for a soluble cofactor. J Clin Invest 75:1735–1739

    CAS  PubMed  Google Scholar 

  • Miyano K, Ogasawara S, Han CH, Fukuda H, Tamura M (2001) A fusion protein between Rac and p67phox (1–210) reconstitutes NADPH oxidase with higher activity and stability than the individual components. Biochemistry 40:14089–14097

    Article  CAS  PubMed  Google Scholar 

  • Miyano K, Fukuda H, Ebisu K, Tamura M (2003) Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a P67phox-p47phox fusion protein. Biochemistry 42:184–190

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267:10215–10218

    CAS  PubMed  Google Scholar 

  • Morozov I, Lotan O, Joseph G, Gorzalczany Y, Pick E (1998) Mapping of functional domains in p47phox involved in the activation of NADPH oxidase by “peptide walking”. J Biol Chem 273:15435–15444

    Article  CAS  PubMed  Google Scholar 

  • Moser B, Schumacher C, Von Tscharner V, Clark-Lewis I, Baggiolini M (1991) Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J Biol Chem 266:10666–10671

    CAS  PubMed  Google Scholar 

  • Nagasawa T, Ebisu K, Inoue Y, Miyano K, Tamura M (2003) A new role of Pro-73 of p47phox in the activation of neutrophil NADPH oxidase. Arch Biochem Biophys 416:92–100

    Article  CAS  PubMed  Google Scholar 

  • Nakamura R, Sumimoto H, Mizuki K, Hata K, Ago T, Kitajima S, Takehige K, Sakaki Y, Ito T (1998) The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p40phox and p67phox, SH3 domain-containing cytosolic factors of the phagocyte NADPH oxidase. Eur J Biochem 251:583–589

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (2003) Oxygen and the inflammatory cell. Nature 422:675–676

    Article  CAS  PubMed  Google Scholar 

  • Nauseef WM (1999) The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Phys 111:373–382

    CAS  Google Scholar 

  • Nauseef WM, Metcalf JA, Root RK (1983) Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood 61:483–491

    CAS  PubMed  Google Scholar 

  • Nauseef WM, McCormick S, Renee J, Leidal KG, Clark RA (1993) Functional domain in an arginine-rich carboxy terminal region of p47 phox. J Biol Chem 268:23646–23651

    CAS  PubMed  Google Scholar 

  • Nisimoto Y, Freeman JLR, Motalebi SZ, Hirshberg M, Lambeth JD (1997) Rac binding to p67phox. J Biol Chem 272:18834–18841

    Article  CAS  PubMed  Google Scholar 

  • Nisimoto Y, Motalebi S, Han CH, Lambeth JD (1999) The p67phox activation domain regulates electron flow from NADPH to flavin in flavocytochrome b558. J Biol Chem 274:22999–23005

    Article  CAS  PubMed  Google Scholar 

  • Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    CAS  PubMed  Google Scholar 

  • Ohno Y-I, Hirai K-I, Kanoh T, Uchino H, Ogawa K (1982a) Subcellular localization of H2O2 production in human neutrophils stimulated with particles and an effect of cytochalasin-B on cells. Blood 60:253–260

    CAS  PubMed  Google Scholar 

  • Ohno Y-I, Hirai K-I, Kanoh T, Uchino H, Ogawa K (1982b) Subcellular localization of hydrogen peroxide production in human polymorphonuclear leukocytes stimulated with lectins, phorbol myristate acetate, and digitonin: an electron microscopic study using CeCl3. Blood 60:1195–1202

    CAS  PubMed  Google Scholar 

  • Oldenborg P, Zheleznyak A, Fang Y, Lagenaur C, Gresham H, Lindberg F (2000) Role of CD47 as a marker of self on red blood cells. Science 288:2051–2054

    Article  CAS  PubMed  Google Scholar 

  • Paclet MH, Coleman AW, Vergnaud S, Morel F (2000) p67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy. Biochemistry 39:9302–9310

    Article  CAS  PubMed  Google Scholar 

  • Park J-W, Ma M, Ruedi JM, Smith RM, Babior BM (1992) The cytosolic components of the respiratory burst oxidase exist as a Mr−240,000 complex that acquires a membrane-binding site during activation of the oxidase in a cell-free system. J Biol Chem 267:17327–17332

    CAS  PubMed  Google Scholar 

  • Park MY, Imajoh-Ohmi S, Nunoi H, Kanegasaki S (1997) Synthetic peptides corresponding to various hydrophilic regions of the large subunit of cytochrome b558 inhibit superoxide generation in a cell-free system from neutrophils. Biochem Biophys Res Commun 234:531–536

    Article  CAS  PubMed  Google Scholar 

  • Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH (1988) Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochrome b. Proc Natl Acad Sci U S A 85:3319–3323

    CAS  PubMed  Google Scholar 

  • Peng GH, Huang J, Boyd M, Kleinberg ME (2003) Properties of phagocyte NADPH oxidase p47-phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid. Biochem J 373:221–229

    Article  CAS  PubMed  Google Scholar 

  • Philips MR, Feoktistov A, Pillinger MH, Abramson SB (1995) Translocation of p21rac2 from cytosol to plasma membrane is neither necessary nor sufficient for neutrophil NADPH oxidase activity. J Biol Chem 270:11514–11521

    Article  CAS  PubMed  Google Scholar 

  • Ponting CP (1996) Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains. Protein Sci 5:2353–2357

    CAS  PubMed  Google Scholar 

  • Proctor RA (2000) Toward an understanding of biomaterial infections: a complex interplay between the host and bacteria. J Lab Clin Med 135:14–15

    CAS  PubMed  Google Scholar 

  • Quie PG (1993) Chronic granulomatous disease of childhood: a saga of discovery and understanding. Pediatr Infect Dis J 12:395–398

    CAS  PubMed  Google Scholar 

  • Quie PG, White JG, Holmes B, Good RA (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679

    CAS  PubMed  Google Scholar 

  • Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM (1993) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem 268:20983–20987

    CAS  PubMed  Google Scholar 

  • Regelmann W, Hays N, Quie PG (1983) Chronic granulomatous disease: historical perspective and clinical experience at the University of Minnesota hospitals. In: Gallin JI, Fauci AS (eds) Chronic granulomatous disease. Raven, New York, pp 3–23

  • Rosen H, Klebanoff SJ (1976) Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest 58:50–60

    CAS  PubMed  Google Scholar 

  • Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M-C, Pick E (2004) Dual role of Rac in the assembly of the NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016

    Article  CAS  PubMed  Google Scholar 

  • Sathyamoorthy M, de Mendez I, Adams AG, Leto TL (1997) p40phox down-regulates NADPH oxidase activity through interactions with its SH3 domain. J Biol Chem 272:9141–9146

    Article  CAS  PubMed  Google Scholar 

  • Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362

    CAS  PubMed  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  CAS  PubMed  Google Scholar 

  • Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517

    CAS  PubMed  Google Scholar 

  • Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  CAS  PubMed  Google Scholar 

  • Shmelzer Z, Haddad N, Admon E, Pessach I, Leto TL, Eitan-Hazan Z, Hershfinkel M, Levy R (2003) Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J Cell Biol 162:683–692

    Article  CAS  PubMed  Google Scholar 

  • Someya A, Nagaoka I, Yamashita T (1993) Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS Lett 330:215–218

    Article  CAS  PubMed  Google Scholar 

  • Stasia MJ, Lardy B, Maturana A, Rousseau P, Martel C, Bordigoni P, Dernaurex N, Morel F (2002) Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. Biochim Biophys Acta Mol Basis Dis 1586:316–330

    Article  CAS  Google Scholar 

  • Sumimoto H, Ito T, Hata K, Mizuki K, Nakamura R, Kage Y, Sakaki Y, Nakamura M, Takeshige K (1997) Membrane translocation of cytosolic factors in activation of the phagocyte NADPH oxidase: role of protein–protein interactions. In: Hamasaki N, Mihara K (eds) International Symposium Membrane Proteins Structure, Function and Expression Control. Kyushu University Press, Kyushu, pp 235–245

  • Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29510

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Jones DT, Segal AW (1993) A structural model for the nucleotide binding domains of the flavocytochrome b-245 b-chain. Protein Sci 2:1675–1685

    CAS  PubMed  Google Scholar 

  • Toporik A, Gorzalczany Y, Hirshberg M, Pick E, Lotan O (1998) Mutational analysis of novel effector domains in rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Biochemistry 37:7147–7156

    Article  CAS  PubMed  Google Scholar 

  • Uhlinger DJ, Burnham DN, Lambeth JD (1991) Nucleoside triphosphate requirements for superoxide generation and phosphorylation in a cell-free system from human neutrophils: sodium dodecyl sulfate and diacylglycerol activate independently of protein kinase C. J Biol Chem 266:20990–20997

    CAS  PubMed  Google Scholar 

  • van Bruggen R, Anthony E, Fernandez-Borja M, Roos D (2004) Continuous translocation of Rac2 and the NADPH oxidase component p67phox during phagocytosis. J Biol Chem 279:9097–9102

    Article  PubMed  Google Scholar 

  • Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  CAS  PubMed  Google Scholar 

  • Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil NADPH oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1298

    CAS  PubMed  Google Scholar 

  • Wientjes FB, Hsuan JJ, Totty NF, Segal AW (1993) p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296:557–561

    CAS  PubMed  Google Scholar 

  • Wientjes FB, Panayotou G, Reeves E, Segal AW (1996) Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochem J 317:919–924

    CAS  PubMed  Google Scholar 

  • Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specifc Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654

    CAS  PubMed  Google Scholar 

  • Wilson L, Butcher C, Finan P, Kellie S (1997) SH3 domain-mediated interactions involving the phox components of the NADPH oxidase. Inflamm Res 46:265–271

    Article  CAS  PubMed  Google Scholar 

  • Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease: report on a national registry of 368 patients. Medicine 79:155–169

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB (2002) The p47phox PX domain: two heads are better than one! Structure 10:1288–1290

    Google Scholar 

  • Yu L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. J Biol Chem 272:27288–27294

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Cross AR, Zhen L, Dinauer MC (1999) Functional analysis of NADPH oxidase in granulocytic cells expressing a D488–497 gp91phox deletion mutant. Blood 94:2497–2504

    CAS  PubMed  Google Scholar 

  • Zhan S, Vazquez N, Wientjes FB, Budarf ML, Schrock E, Ried T, Green ED, Chanock SJ (1998) Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p40-phox, a new component of the nicotinamide adenine dinucleotide phosphate–oxidase complex. Blood 88:2714–2721

    Google Scholar 

  • Zhao X, Bey EA, Wientjes FB, Cathcart MK (2002) Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. J Biol Chem 277:25385–25392

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Carnevale KA, Cathcart MK (2003) Human monocytes use rac1, not rac2, in the NADPH oxidase complex. J Biol Chem 278:40788–40792

    Article  CAS  PubMed  Google Scholar 

  • Zhen L, King AAJ, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci U S A 90:9832–9836

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Nauseef laboratory is supported by the National Institutes of Health (AI34879, HL53592, and AI44642) and by a Merit Review Grant from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Nauseef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nauseef, W.M. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 122, 277–291 (2004). https://doi.org/10.1007/s00418-004-0679-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0679-8

Keywords

Navigation