Skip to main content

Advertisement

Log in

Energy metabolism and proliferation in pancreatic carcinogenesis

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer entity with a high proliferative potential. Uncontrolled cell proliferation is mediated by a number of core signaling pathways. Recently, novel data of PDAC biology suggest that these core signal pathways affect cell proliferation and metabolism simultaneously.

Methods

Here, we reviewed the literature on core metabolic signaling pathways in pancreatic carcinogenesis.

Results

Results obtained from mouse genetics and in vitro experiments have demonstrated the significance of the Kras, p53, c-Myc, and Lkb1 networks in the proliferation of pancreatic epithelial and cancer cells. At the same time, these major pathways also affect energy metabolism by influencing glucose and glutamine utilization. In particular, Kras-mediated metabolic changes seem to be directly involved in carcinogenesis. However, there is a lack of solid evidence on how metabolism and proliferation are connected in pancreatic carcinogenesis.

Conclusion

Understanding early and subtle changes in cellular metabolism of pancreatic epithelial—and specifically of acinar—cells, which accompany or directly influence malignant transformation and uncontrolled proliferation, will be paramount to define novel imaging and other modalities for earlier detection of PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. DeBerardinis RJ et al (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  PubMed  CAS  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA: A Cancer Journal for Clinicians 62(1):10–29

    Article  Google Scholar 

  3. Aichler M et al (2011) Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. J Pathol doi: 10.1002/path.3017

  4. Vincent A et al (2011) Pancreatic cancer. Lancet 378(9791):607–620

    Article  PubMed  Google Scholar 

  5. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren. Biochem Z 152:319–344

    Google Scholar 

  6. Hunt TK et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124

    Article  PubMed  CAS  Google Scholar 

  7. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Article  PubMed  CAS  Google Scholar 

  8. Le A et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107(5):2037–2042

    Article  PubMed  CAS  Google Scholar 

  9. Schneiderhan W et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398

    Article  PubMed  CAS  Google Scholar 

  10. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344

    Article  PubMed  CAS  Google Scholar 

  11. Zhou W et al (2012) Proteomic analysis reveals warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res 11(2):554–563

    Article  PubMed  CAS  Google Scholar 

  12. Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res: Off J Am Assoc Cancer Res 11(13):4694–4700

    Article  CAS  Google Scholar 

  13. DeBerardinis RJ et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350

    Article  PubMed  CAS  Google Scholar 

  14. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    Article  PubMed  CAS  Google Scholar 

  15. Frezza C, Pollard PJ, Gottlieb E (2011) Inborn and acquired metabolic defects in cancer. J Mol Med 89(3):213–220

    Article  PubMed  CAS  Google Scholar 

  16. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143

    PubMed  CAS  Google Scholar 

  17. Iacobuzio-Donahue CA et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol: Off J Am Soc Clin Oncol 27(11):1806–1813

    Article  CAS  Google Scholar 

  18. Hezel AF et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249

    Article  PubMed  CAS  Google Scholar 

  19. Gaglio D et al (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523

    Article  PubMed  CAS  Google Scholar 

  20. Yun J et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559

    Article  PubMed  CAS  Google Scholar 

  21. Vizan P et al (2005) K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res 65(13):5512–5515

    Article  PubMed  CAS  Google Scholar 

  22. Chiaradonna F et al (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404

    Article  PubMed  CAS  Google Scholar 

  23. Skoudy A, Hernandez-Munoz I, Navarro P (2011) Pancreatic ductal adenocarcinoma and transcription factors: role of c-Myc. J Gastrointest Cancer 42(2):76–84

    Article  PubMed  CAS  Google Scholar 

  24. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990

    Article  PubMed  CAS  Google Scholar 

  25. Schleger C et al (2002) c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 15(4):462–469

    Article  PubMed  CAS  Google Scholar 

  26. Sears R et al (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514

    Article  PubMed  CAS  Google Scholar 

  27. Wise DR et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787

    Article  PubMed  CAS  Google Scholar 

  28. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: Off J Am Assoc Cancer Res 15(21):6479–6483

    Article  CAS  Google Scholar 

  29. Scarpa A et al (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 142(5):1534–1543

    PubMed  CAS  Google Scholar 

  30. Pellegata NS et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54(6):1556–1560

    PubMed  CAS  Google Scholar 

  31. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10(4):431–442

    Article  PubMed  CAS  Google Scholar 

  32. Shen L et al (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clinical Cancer Res (in press)

  33. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7):2627–2633

    Article  PubMed  CAS  Google Scholar 

  34. Bensaad K et al (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120

    Article  PubMed  CAS  Google Scholar 

  35. Mathupala SP, Heese C, Pedersen PL (1997) Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 272(36):22776–22780

    Article  PubMed  CAS  Google Scholar 

  36. Hu W et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107(16):7455–7460

    Article  PubMed  CAS  Google Scholar 

  37. Mehenni H et al (2006) Cancer risks in LKB1 germline mutation carriers. Gut 55(7):984–990

    Article  PubMed  CAS  Google Scholar 

  38. Birnbaum DJ et al (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50(6):456–465

    Article  PubMed  CAS  Google Scholar 

  39. Alessi DR, Sakamoto K, Bayascas JR (2006) LKB1-dependent signaling pathways. Annu Rev Biochem 75:137–163

    Article  PubMed  CAS  Google Scholar 

  40. Katajisto P et al (2007) The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta 1775(1):63–75

    PubMed  CAS  Google Scholar 

  41. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096

    PubMed  CAS  Google Scholar 

  42. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85(14):5166–5170

    Article  PubMed  CAS  Google Scholar 

  43. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89(15):6861–6865

    Article  PubMed  CAS  Google Scholar 

  44. Jonsson J et al (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371(6498):606–609

    Article  PubMed  CAS  Google Scholar 

  45. Offield MF et al (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122(3):983–995

    PubMed  CAS  Google Scholar 

  46. Krapp A et al (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev 12(23):3752–3763

    Article  PubMed  CAS  Google Scholar 

  47. Kawaguchi Y et al (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32(1):128–134

    Article  PubMed  CAS  Google Scholar 

  48. Hingorani SR et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483

    Article  PubMed  CAS  Google Scholar 

  49. Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5(4):375–387

    Article  PubMed  CAS  Google Scholar 

  50. Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122:639–53

    Article  PubMed  CAS  Google Scholar 

  51. Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  PubMed  CAS  Google Scholar 

  52. Morton JP et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107(1):246–251

    Article  PubMed  CAS  Google Scholar 

  53. Nakada D, Saunders TL, Morrison SJ (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658

    Article  PubMed  CAS  Google Scholar 

  54. Gurumurthy S et al (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468(7324):659–663

    Article  PubMed  CAS  Google Scholar 

  55. Gan B et al (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468(7324):701–704

    Article  PubMed  CAS  Google Scholar 

  56. Sato N et al (2001) STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol 159(6):2017–2022

    Article  PubMed  CAS  Google Scholar 

  57. Hezel AF et al (2008) Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28(7):2414–2425

    Article  PubMed  CAS  Google Scholar 

  58. Morton JP et al (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology 139(2):586–597, 597 e1-6

    Article  PubMed  CAS  Google Scholar 

  59. Bonal C et al (2009) Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136(1):309–319, e9

    Article  PubMed  CAS  Google Scholar 

  60. Nakhai H et al (2008) Conditional inactivation of Myc impairs development of the exocrine pancreas. Development 135(19):3191–3196

    Article  PubMed  CAS  Google Scholar 

  61. Sandgren EP et al (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88(1):93–97

    Article  PubMed  CAS  Google Scholar 

  62. Mazur PK et al (2010) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA 107(30):13438–13443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has in part been supported by a grant from the Else-Kröner-Fresenius-Stiftung (to CWM and JK) and from the European Union (EPC-TM-NET, within the FP7 program, to CWM, ME, and JK).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Hartel or Jörg Kleeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regel, I., Kong, B., Raulefs, S. et al. Energy metabolism and proliferation in pancreatic carcinogenesis. Langenbecks Arch Surg 397, 507–512 (2012). https://doi.org/10.1007/s00423-012-0933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-012-0933-9

Keywords

Navigation