Skip to main content
Log in

Multiple types of Na+ currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Small (<25 μm in diameter) neurons of the dorsal root ganglion (DRG) express multiple voltage-gated Na+ channel subtypes, two of which being resistant to tetrodotoxin (TTX). Each subtype mediates Na+ current with distinct kinetic property. However, it is not known how each type of Na+ channel contributes to the generation of action potentials in small DRG neurons. Therefore, we investigated the correlation between Na+ currents in voltage-clamp recordings and corresponding action potentials in current-clamp recordings, using wild-type (WT) and NaV1.8 knock-out (KO) mice, to clarify the action potential electrogenesis in small DRG neurons. We classified Na+ currents in small DRG neurons into three categories on the basis of TTX sensitivity and kinetic properties, i.e., TTX-sensitive (TTX-S)/fast Na+ current, TTX-resistant (TTX-R)/slow Na+ current, and TTX-R/persistent Na+ current. Our concurrent voltage- and current-clamp recordings from the same neuron revealed that the action potentials in WT small DRG neurons were mainly dependent on TTX-R/slow Na+ current mediated by NaV1.8. It was surprising that a large portion of TTX-S/fast Na+ current was switched off in WT small DRG neurons due to a hyperpolarizing shift of the steady-state inactivation (h ), whereas in KO small DRG neurons which are devoid of TTX-R/slow Na+ current, the action potentials were generated by TTX-S/fast Na+ current possibly through a compensatory shift of h in the positive direction. We also confirmed that TTX-R/persistent Na+ current mediated by NaV1.9 actually regulates subthreshold excitability in small DRG neurons. In addition, we demon strated that TTX-R/persistent Na+ current can carry an action potential when the amplitude of this current was abnormally increased. Thus, our results indicate that the action potentials in small DRG neurons are generated and regulated with a combination of multiple mechanisms that may give rise to unique functional properties of small DRG neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurones. Nature 379:257–262

    Article  PubMed  CAS  Google Scholar 

  2. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, Mcmahon SB, Boyce H, Hill R, Stanfa LC, Dickerson, AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  PubMed  CAS  Google Scholar 

  3. Baker MD, Chandra SY, Ding Y, Waxman SG, Wood JN (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol (Lond) 548:373–382

    Article  CAS  Google Scholar 

  4. Benn SC, Costigan M, Tate S, Fitzgerald M, Woolf CJ (2001) Developmental expression of the TTX-resistant voltage-gated sodium channels NaV1.8 (SNS) and NaV1.9 (SNS2) in primary sensory neurons. J Neurosci 21:6077–6085

    PubMed  CAS  Google Scholar 

  5. Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG (1999) Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol 82:2776–2785

    PubMed  CAS  Google Scholar 

  6. Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol (Lond) 512:211–217

    Article  CAS  Google Scholar 

  7. Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD (1992) Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 592:283–297

    Article  PubMed  CAS  Google Scholar 

  8. Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2:397–407

    Article  PubMed  CAS  Google Scholar 

  9. Carl YS, Cummins TR, Waxman SG (2003) GTPγs increase NaV1.8 current in small-diameter dorsal root ganglia neurons. Exp Brain Res 152:415–419

    Article  Google Scholar 

  10. Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72:S15–S48

    PubMed  CAS  Google Scholar 

  11. Chen Y, Penington NJ (2000) Competition between internal AlF4 and receptor-mediated stimulation of dorsal raphe neuron G-proteins coupled to calcium current inhibition. J Neurophysiol 83:1273–1282

    PubMed  CAS  Google Scholar 

  12. Coste B, Osorio N, Padilla O, Crest M, Delmas P (2004) Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Mol Cell Neurosci 26:123–134

    Article  PubMed  CAS  Google Scholar 

  13. Cummins TR, Waxman SG (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17:3503–3514

    PubMed  CAS  Google Scholar 

  14. Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:1–6

    Google Scholar 

  15. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci USA 95:8963–8968

    Article  PubMed  CAS  Google Scholar 

  16. Dib-Hajj SD, Tyrell L, Escayg A, Wood PM, Meisler MH, Waxman SG (1999) Coding sequence, genomic organization, and conserved chromosomal localization of the mouse gene Scn11a encoding the sodium channel NaN. Genomics 59:309–318

    Article  PubMed  CAS  Google Scholar 

  17. Elliot AA, Elliot JR (1993) Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol (Lond) 463:39–56

    Google Scholar 

  18. Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  PubMed  CAS  Google Scholar 

  19. Gruβ M, Henrich M, König P, Hempelmann G, Vogel W, Scholz A (2001) Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BKCa channels. Eur J Neurosci 14:1246–1256

    Article  Google Scholar 

  20. Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in stimulated spinal sensory neurons. J Neurophysiol 86:1351–1364

    PubMed  CAS  Google Scholar 

  21. Jeftinija S (1994) The role of tetrodotoxin-resistant sodium channels of small primary afferent fibers. Brain Res 639:125–134

    Article  PubMed  CAS  Google Scholar 

  22. Kuryshev YA, Naumov AP, Avdonin PV, Mozhayeva GN (1993) Evidence for involvement of a GTP-binding protein in activation of Ca2+ influx by epidermal growth factor in A431 cells: effects of fluoride and bacterial toxins. Cell Signal 5:555–564

    Article  PubMed  CAS  Google Scholar 

  23. Lee GY, Shin YK, Lee CS, Song J-H (2002) Effects of arachidonic acid on sodium currents in rat dorsal root ganglion neurons. Brain Res 950:95–102

    Article  PubMed  CAS  Google Scholar 

  24. Lindia JA, Kohler MG, Martin WJ, Abbadie C (2005) Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain 117:145–153

    Article  PubMed  CAS  Google Scholar 

  25. Maruyama H, Yamamoto M, Matsutomi T, Zheng T, Nakata Y, Wood JN, Ogata N (2004) Electrophysiological characterization of the tetrodotoxin-resistant Na+ channel, NaV1.9, in mouse dorsal root ganglion neurons. Pflugers Arch 449:76–87

    Article  PubMed  CAS  Google Scholar 

  26. Ogata N, Tatebayashi H (1992) Slow inactivation of tetrodooxin-insensitive Na channels in neurons of rat dorsal root ganglia. J Membr Biol 129:71–80

    PubMed  CAS  Google Scholar 

  27. Ogata N, Tatebayashi H (1993) Kinetic analysis of two types of Na+ channels in rat dorsal root ganglia. J Physiol (Lond) 466:9–37

    CAS  Google Scholar 

  28. Pinkse MWH, Merkx M, Averill BA (1999) Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme–phosphate–fluoride complex as a model for the active enzyme–substrate–hydroxide complex. Biochemistry 38:9926–9936

    Article  PubMed  CAS  Google Scholar 

  29. Qu Y, Curtis R, Lawson D, Gilbride K, Ge P, DiStefano PS, Silos-Santiago I, Catterall WA, Scheuer T (2001) Differential modulation of sodium channel gating and persistent sodium currents by the β1, β2, and β3 subunits. Mol Cell Neurosci 18:570–580

    Article  PubMed  CAS  Google Scholar 

  30. Renganathan M, Cummins TR, Waxman SG (2001) Contribution of NaV1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86:629–640

    PubMed  CAS  Google Scholar 

  31. Rugiero F, Mistry M, Sage D, Black JA, Waxman SG, Crest M, Clerc N, Delmas P, Gola M (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J Neurosci 23:2715–2725

    PubMed  CAS  Google Scholar 

  32. Rush AM, Waxman SG (2004) PGE2 increases the tetrodotoxin-resistant NaV1.9 sodium current in mouse DRG neurons via G-proteins. Brain Res 1023:264–271

    Article  PubMed  CAS  Google Scholar 

  33. Rush AM, Brau ME, Elliot AR, Elliot JR (1998) Electrophysiological properties of sodium current subtypes in small cells from adult rat dorsal root ganglia. J Physiol (Lond) 511:771–789

    Article  CAS  Google Scholar 

  34. Sangameswaran L, Delgado SG, Fish LM, Koch BD, Jakeman, Stewart GR, Sze P, Hunter JC, Eglen RM, Herman RC (1996) Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J Biol Chem 271:5953–5956

    Article  PubMed  CAS  Google Scholar 

  35. Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ current heterogeneity in rat nodes neurons and its impact on neuronal discharge. J Neurophysiol 78:3198–3209

    PubMed  CAS  Google Scholar 

  36. Song JH, Nagata K, Huang CS, Yeh JZ, Narahashi T (1996) Differential block of two types of sodium channels by anticonvulsants. Neuroreport 25:3031–3036

    Article  Google Scholar 

  37. Sternweis PC, Gilman AG (1982) Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79:4888–4891

    Article  PubMed  CAS  Google Scholar 

  38. Strassman AM, Raymond SA (1999) Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers. J Neurophysiol 81:413–424

    PubMed  CAS  Google Scholar 

  39. Vijayaragavan K, Boutjdir M, Chahine M (2004) Modulation of NaV1.7 and NaV1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol 91:1556–1569

    Article  PubMed  CAS  Google Scholar 

  40. Vijayaragavan K, Powell AJ, Kinghorn IJ, Chahine M (2004) Role of auxiliary β1-, β2, and β3-subunits and their interaction with NaV1.8 voltage-gated sodium channel. Biochem Biophys Res Commun 319:531–540

    Article  PubMed  CAS  Google Scholar 

  41. Waxman SG, Kocsis JD, Black JA (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72:466–471

    PubMed  CAS  Google Scholar 

  42. Yatani A, Brown AM (1991) Mechanism of fluoride activation of G protein-gated muscarinic atrial K+ channels. J Biol Chem 266:22872–22877

    PubMed  CAS  Google Scholar 

  43. Zhang J-M, Song X-J, LaMotte RH (1999) Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 82:3359–3366

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobukuni Ogata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsutomi, T., Nakamoto, C., Zheng, T. et al. Multiple types of Na+ currents mediate action potential electrogenesis in small neurons of mouse dorsal root ganglia. Pflugers Arch - Eur J Physiol 453, 83–96 (2006). https://doi.org/10.1007/s00424-006-0104-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0104-3

Keywords

Navigation