Skip to main content
Log in

Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is ‘unhealthy’, a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase in BMI and amount of SATa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agbaga MP (2016) Different mutations in ELOVL4 affect very long chain fatty acid biosynthesis to cause variable neurological disorders in humans. Adv Exp Med Biol 854:129–135

    Article  CAS  PubMed  Google Scholar 

  • Bysani M, Wallerman O, Bornelöv S, Zatloukal K, Komorowski J, Wadelius C (2013) ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer. BMC Med Genom 6:50. doi:10.1186/1755-8794-6-50

    Article  Google Scholar 

  • Carey KA, Farnfield MM, Tarquinio SD, Cameron-Smith D (2007) Impaired expression of Notch signaling genes in aged human skeletal muscle. J Gerontol A Biol Sci Med Sci 62:9–17

    Article  PubMed  Google Scholar 

  • Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, Wu TC, Lane MD, Diehl AM (1999) Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem 274:5692–5700

    Article  CAS  PubMed  Google Scholar 

  • Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM (2007) Xanthine oxidoreductase is a regulator of adipogenesis and PPARγ activity. Cell Metab 5:115–128

    Article  CAS  PubMed  Google Scholar 

  • Cirera S (2013) Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes 6:472. doi:10.1186/1756-0500-6-472

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirera S, Jensen MS, Elbrønd VS, Moesgaard SG, Christoffersen BØ, Kadarmideen HN, Skovgaard K, Bruun CV, Karlskov-Mortensen P, Jørgensen CB, Fredholm M (2014) Expression studies of six human obesity-related genes in seven tissues from divergent pig breeds. Anim Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Cirera S, Tørsleff BC, Ritz C, Fredholm M, Heegaard PM, Skovgaard K (2016) Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity. Mamm Genome 27:503–510

    Article  CAS  PubMed  Google Scholar 

  • Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36:54–59

    Article  CAS  PubMed  Google Scholar 

  • Gloerich J, Ruiter JP, van den Brink DM, Ofman R, Ferdinandusse S, Wanders RJ (2006) Peroxisomal trans -2-enoyl-CoA reductase is involved in phytol degradation. FEBS Lett 580:2092–2096

    Article  CAS  PubMed  Google Scholar 

  • Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshøj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Houpt KA, Houpt TR, Pond WG (1979) The pig as a model for the study of obesity and of control of food intake: a review. Yale J Biol Med 52:307–329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen MJ, Mentzel CMJ, Olesen AS, Huby T, Jørgensen CB, Barrès R, Fredholm M, Simar D (2016) Altered methylation profile of lymphocytes is concordant with perturbation of lipids metabolism and inflammatory response in obesity. J Diabetes Res 2016:8539057. doi:10.1155/2016/8539057

    Article  PubMed  Google Scholar 

  • Jimenez MA, Akerblad P, Sigvardsson M, Rosen ED (2007) Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol 27:743–757

    Article  CAS  PubMed  Google Scholar 

  • Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN, Genter MB, Nebert DW, Shertzer HG (2011) Lipid metabolism and body composition in Gclm(−/−) mice. Toxicol Appl Pharmacol 257:338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogelman LJ, Kadarmideen HN, Mark T, Karlskov-Mortensen P, Bruun CS, Cirera S, Jacobsen MJ, Jørgensen CB, Fredholm M (2013) An f2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans: design and genetic parameters. Front Genet 4:29. doi:10.3389/fgene.2013.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen T, Fredholm M, Cirera S (2015) Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model. Mamm Genome 26:650–657

    Article  CAS  PubMed  Google Scholar 

  • Lauridsen JK, Olesen RH, Vendelbo J, Hyde TM, Kleinman JE, Bibby BM, Brock B, Rungby J, Larsen A (2017) High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex. Transl Psychiatry 7:e1044. doi:10.1038/tp.2016.259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loos RJ, Rankinen T, Pérusse L, Tremblay A, Després JP, Bouchard C (2007) Association of lipin 1 gene polymorphisms with measures of energy and glucose metabolism. Obesity 15:2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Mentzel CMJ, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS, Jørgensen CB, Gorodkin J, Cirera S, Fredholm M (2015) Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs. PLoS One. doi:10.1371/journal.pone.0131650

    PubMed  PubMed Central  Google Scholar 

  • Mentzel CMJ, Alkan F, Keinicke H, Jacobsen MJ, Gorodkin J, Fredholm M, Cirera S (2016) Joint profiling of miRNAs and mRNAs reveals miRNA mediated gene regulation in the Göttingen minipig obesity model. PLoS One 11:e0167285. doi:10.1371/journal.pone.0167285

    Article  PubMed  PubMed Central  Google Scholar 

  • Mentzel CMJ, Cardoso TF, Lex AMJ, Sørensen DB, Fredholm M, Cirera S (2017) Fat and carbohydrate content in the diet induces drastic changes in gene expression in young Göttingen minipigs. Mamm Genome 28:166–175

    Article  CAS  PubMed  Google Scholar 

  • Neumeier M, Weigert J, Schäffler A, Weiss TS, Schmidl C, Büttner R, Bollheimer C, Aslanidis C, Schölmerich J, Buechler C (2006) Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun 350:731–735

    Article  CAS  PubMed  Google Scholar 

  • Pant SD, Karlskov-Mortensen P, Jacobsen MJ, Cirera S, Kogelman LJ, Bruun CS, Mark T, Jørgensen CB, Grarup N, Appel EV, Galjatovic EA, Hansen T, Pedersen O, Guerin M, Huby T, Lesnik P, Meuwissen TH, Kadarmideen HN, Fredholm M (2015) Comparative analyses of QTLs influencing obesity and metabolic phenotypes in pigs and humans. PLoS One. doi:10.1371/journal.pone.0137356

    Google Scholar 

  • Paulmyer-Lacroix O, Desbriere R, Poggi M, Achard V, Alessi MC, Boudouresque F, Ouafik L, Vuaroqueaux V, Labuhn M, Dutourand A, Grino M (2006) Expression of adrenomedullin in adipose tissue of lean and obese women. Eur J Endocrinol 155(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Phan J, Reue K (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab 1:73–83

    Article  CAS  PubMed  Google Scholar 

  • Pipper CB, Ritz C, Bisgaard H (2012) A versatile method for confirmatory evaluation of the effects of a covariate in multiple models. J R Stat Soc Ser C Appl Stat 61:315–326

    Article  Google Scholar 

  • Russell L, Garrett-Sinha LA (2010) Transcription factor Ets-1 in cytokine and chemokine gene regulation. Cytokine 51:217–226

    Article  CAS  PubMed  Google Scholar 

  • Schug TT, Li X (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43:198–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimosawa T, Matsui H, Xing G, Itakura K, Ando K, Fujita T (2003) Organ-protective effects of adrenomedullin. Hypertens Res 26(Suppl):S109–S112

    Article  CAS  PubMed  Google Scholar 

  • Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Marciano DL, Leeman SE, Amar S (2005) LPS induces the interaction of a transcription factor, LPS-induced TNF-alpha factor, and STAT6(B) with effects on multiple cytokines. Proc Natl Acad Sci USA 102:5132–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita K, Oike Y, Teratani T, Taguchi T, Noguchi M, Suzuki T, Mizutani A, Yokoyama H, Irie R, Sumimoto H, Takayanagi A, Miyashita K, Akao M, Tabata M, Tamiya G, Ohkura T, Hibi T (2008) Hepatic AdipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice. Hepatology 48:458–473

    Article  CAS  PubMed  Google Scholar 

  • Traini M, Quinn CM, Sandoval C, Johansson E, Schroder K, Kockx M, Meikle PJ, Jessup W, Kritharides L (2014) Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages. J Biol Chem 289:32895–32913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2015) WHO | obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 3 Mar 2016

  • Zago VH, Scherrer DZ, Parra ES, Panzoldo NB, Alexandre F, Nakandakare ER, Quintão EC, de Faria EC (2015) Association between ABCG1 polymorphism rs1893590 and high-density lipoprotein (HDL) in an asymptomatic Brazilian population. Mol Biol Rep 42(3):745–754. doi:10.1007/s11033-014-3823-0 (Epub 2014 Nov 15)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merete Fredholm.

Ethics declarations

Funding

This study was supported by the Danish Independent Research Council Grant number DFF 1335-00127. Tainã Figueiredo Cardoso was supported by an Erasmus+ Grant for superior education 2015 from the European Commission.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The Danish Animal Experiments Inspectorate approved all experimental procedures and animal care and maintenance have been conducted according to the Danish “Animal Maintenance Act” (Act 432 dated 09/06/2004).

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 45 kb)

Supplementary material 2 (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentzel, C.M.J., Cardoso, T.F., Pipper, C.B. et al. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs. Mol Genet Genomics 293, 129–136 (2018). https://doi.org/10.1007/s00438-017-1369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1369-2

Keywords

Navigation