Skip to main content

Advertisement

Log in

Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Primary sclerosing cholangitis (PSC) and cystic fibrosis (CF) are both slowly progressive cholestatic liver diseases characterized by fibro-obliterative inflammation of the biliary tract. We hypothesized that dysfunction of the CF gene product, cystic fibrosis transmembrane conductance regulator (CFTR), may explain why a subset of patients with inflammatory bowel disease develop PSC. We prospectively evaluated CFTR genotype and phenotype in patients with PSC (n=19) compared with patients with inflammatory bowel disease and no liver disease (n=18), primary biliary cirrhosis (n=17), CF (n=81), and healthy controls (n=51). Genetic analysis of the CFTR gene in PSC patients compared with disease controls (primary biliary cirrhosis and inflammatory bowel disease) demonstrated a significantly increased number of mutations/variants in the PSC group (37% vs 8.6% of disease controls, P=0.02). None of the PSC patients carried two mutations/variants. Of PSC patients, 89% carried the 1540G-variant-containing genotypes (resulting in decreased functional CFTR) compared with 57% of disease controls (P=0.03). Only one of 19 PSC patients had neither a CFTR mutation nor the 1540G variant. CFTR chloride channel function assessed by nasal potential difference testing demonstrated a reduced median isoproterenol response of 14 mV in PSC patients compared with 19 mV in disease controls (P=0.04) and 21 mV in healthy controls (P=0.003). These data indicate that there is an increased prevalence of CFTR abnormalities in PSC as demonstrated by molecular and functional analyses and that these abnormalities may contribute to the development of PSC in a subset of patients with inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Balough K, McCubbin M, Weinberger M, Smits W, Ahrens R, Fick R (1995) The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 20:63–70

    CAS  PubMed  Google Scholar 

  • Bienvenu TLV, Raymondjean M, Cazeneuve C, Hubert D, Kaplan JC, Beldjord C (1995) Three novel sequence variations in the 5' upstream region of the cystic fibrosis transmembrane conductance regulator (CFTR) gene: two polymorphisms and one putative molecular defect C. Hum Genet 95:698–702

    CAS  PubMed  Google Scholar 

  • Broome U, Olsson R, Loof L, Bodemar G, Hultcrantz R, Danielsson A, Prytz H, Sandberg-Gertzen H, Wallerstedt S, Lindberg G (1996) Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 38:610–615

    CAS  PubMed  Google Scholar 

  • Chillon M, Casals T, Mercier B, Bassas L, Lissens W, Silber S, Romey MC, Ruiz-Romero J, Verlingue C, Claustres M, et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332:1475–1480

    CAS  PubMed  Google Scholar 

  • Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3:151–156

    CAS  PubMed  Google Scholar 

  • Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG (1993) Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology 105:1857–1864

    CAS  PubMed  Google Scholar 

  • Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS (1998) Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339:653–658

    CAS  PubMed  Google Scholar 

  • Colombo C, Battezzati PM, Podda M (1994) Hepatobiliary disease in cystic fibrosis. Semin Liver Dis 14:259–269

    CAS  PubMed  Google Scholar 

  • Colombo C, Battezzati PM, Strazzabosco M, Podda M (1998) Liver and biliary problems in cystic fibrosis. Semin Liver Dis 18:227–235

    CAS  PubMed  Google Scholar 

  • Cuppens H, Lin W, Jaspers M, Costes B, Teng H, Vankeerberghen A, Jorissen M, Droogmans G, Reynaert I, Goossens M, Nilius B, Cassiman J-J (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. J Clin Invest 101:487–496

    CAS  PubMed  Google Scholar 

  • Davis PB (1984) Autonomic and airway reactivity in obligate heterozygotes for cystic fibrosis. Am Rev Respir Dis 129:911–914

    CAS  PubMed  Google Scholar 

  • Dumur V, Gervais R, Rigot JM, Delomel-Vinner E, Decaestecker B, Lafitte JJ, Roussel P (1996) Congenital bilateral absence of the vas deferens (CBAVD) and cystic fibrosis transmembrane regulator (CFTR): correlation between genotype and phenotype. Hum Genet 97:7-10

    CAS  PubMed  Google Scholar 

  • Durie PR (1998) Pancreatitis and mutations of the cystic fibrosis gene. N Engl J Med 339:687–688

    Article  CAS  PubMed  Google Scholar 

  • Durieu I, Pellet O, Simonot L, Durupt S, Bellon G, Durand DV, Minh VA (1999) Sclerosing cholangitis in adults with cystic fibrosis: a magnetic resonance cholangiographic prospective study. J Hepatol 30:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Farrant JM, Hayllar KM, Wilkinson ML, Karani J, Portmann BC, Westaby D, Williams R (1991) Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 100:1710–1717

    CAS  PubMed  Google Scholar 

  • Farrell PM, Koscik RE (1996) Sweat chloride concentrations in infants homozygous and heterozygous for F508 cystic fibrosis. Pediatrics 97:524–528

    CAS  PubMed  Google Scholar 

  • Gabriel SE, Brigman KN, Killer BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266:107–109

    CAS  PubMed  Google Scholar 

  • Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine ionotophoresis. Pediatrics 23:545–549

    CAS  Google Scholar 

  • Gilbert JR, Vance JM (1998) Isolation of genomic DNA from mammalian cells. In: Dracopoli NC, Haines JL, Korf BR, et al (eds) Current protocols in human genetics. Wiley, New York, pp A.3,B1–2

  • Girodon E, Sternberg D, Chazouilleres O, Cazeneuve C, Huot D, Calmus Y, Poupon R, Goossens M, Housset C (2002) Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis. J Hepatol 37:192–197

    Article  CAS  PubMed  Google Scholar 

  • Grubman SA, Fang SL, Mulberg AE, Perrone RD, Rogers LC, Lee DW, Armentano D, Murray SL, Dorkin HL, Cheng SH, et al (1995) Correction of the cystic fibrosis defect by gene complementation in human intrahepatic biliary epithelial cell lines. Gastroenterology 108:584–592

    CAS  PubMed  Google Scholar 

  • Grubman SA, Lee DW, et al (1997) Regulation of chloride/bicarbonate exchanger activity by wild type and mutant CFTR (abstract). Pediatr Pulmonol Suppl 14:277–278

    Google Scholar 

  • Highsmith WE, Burch LH, Zhou Z, Olsen JC, Boat TE, Spock A, Gorvoy JD, Quittel L, Friedman KJ, Silverman LM, et al (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Eng J Med 331:974–980

    Article  CAS  Google Scholar 

  • Kerem E, Corey M, Kerem B, Rommens J, Markiewicz D, Levison H, Tsui L-C, Durie P (1990) The relation between genotype and phenotype in cystic fibrosis—analysis of the most common mutation. N Engl J Med 323:1517–1522

    CAS  PubMed  Google Scholar 

  • Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DWH (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    CAS  PubMed  Google Scholar 

  • Knowles M, Gatzy J, Boucher R (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 305:1489–1495

    CAS  PubMed  Google Scholar 

  • Lee YM, Kaplan MM (1995) Primary sclerosing cholangitis. N Engl J Med 332:924–933

    Article  CAS  PubMed  Google Scholar 

  • Massie RJ, Wilcken B, Van Aseren P, Dorney S, Gurca M, Wiley V, Gastrin K (2000) Pancreatic function and extended mutation analysis in delta F508 heterozygous infants with an elevated immunoreactive trypsinogen but normal sweat electrolyte levels. J Pediatr 137:214–220

    Article  CAS  PubMed  Google Scholar 

  • McGill JM, Williams DM, Hunt CM (1996) Survey of cystic fibrosis transmembrane conductance regulator genotypes in primary sclerosing cholangitis. Dig Dis Sci 41:540–542

    CAS  PubMed  Google Scholar 

  • Muhlebach M, Stewart P, Leigh M, Noah T (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160:186-191

    CAS  PubMed  Google Scholar 

  • Nagel RA, Westaby D, Javaid A, Kavani J, Meire HB, Lombard MG, Wise A, Williams R, Hodson ME (1989) Liver disease and bile duct abnormalities in adults with cystic fibrosis. Lancet II:1422–425

    Google Scholar 

  • O'Brien S, Keogan M, Casey M, Duffy G, McErlean D, Fitzgerald MX, Hegarty JE (1992) Biliary complications of cystic fibrosis. Gut 33:387–91

    CAS  PubMed  Google Scholar 

  • Porayko MK, LaRusso NF, Wiesner RH (1991) Primary sclerosing cholangitis: a progressive disease? Semin Liver Dis 11:18–25

  • Poupon R, Poupon RE (1996) Primary biliary cirrhosis. In: Zakim D, Boyer TD (eds) Hepatology: a textbook of liver disease, vol 44. Saunders, Philadelphia, pp 1329–1365

  • Rosenstein BJ, Cutting GR (1998) The diagnosis of cystic fibrosis: a consensus statement. J Pediatr 132:589–595

    CAS  PubMed  Google Scholar 

  • Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, Braganza J (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652

    CAS  PubMed  Google Scholar 

  • Tsui L-C (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8:392

    Article  CAS  PubMed  Google Scholar 

  • Tzetis M, Kanavakis E, Antoniadi T, Doudounakis S, Adam G, Kattamis C (1997) Characterization of more than 85% of cystic fibrosis alleles in the Greek population, including five novel mutations. Hum Genet 99:121–125

    Article  CAS  PubMed  Google Scholar 

  • Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H (1998) Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett 437:1-4

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Moylan B, Leopold DA, Kim J, Rubenstein RC, Togias A, Proud D, Zeitlin PL, Cutting GR (2000) Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284:1814–1819

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Ramsey BW, Accurso F, Cutting GR (2001) Cystic fibrosis. In: Scriver C, Vogelstein B, Beaudet AL, Childs B, Kinzler KW, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease (8th edn). McGraw-Hill, New York, pp 5121–5188.

  • Zielenski J (2000) Genotype and phenotype in cystic fibrosis. Respiration 67:117–133

    Article  CAS  PubMed  Google Scholar 

  • Zielenski J, Aznarez I, Onay T, Tzounzouris J, Markiewicz D, Tsui LC (2002) CFTR mutation detection by multiplex heteroduplex (mHET) analysis on MDE gel. Methods Mol Med 70:3-19

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the American College of Gastroenterology (S.S., S.F.), in part by grant RR 01032 to the Beth Israel Deaconess Medical Center General Clinical Research Center from the National Institutes of Health, the National Institutes of Health (NIH SCOR; NIDDK 5PJODK 49096) and the Canadian Cystic Fibrosis Foundation (P.D., J.Z., L.C.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Freedman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, S., Shea, J.C., Bishop, M.D. et al. Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum Genet 113, 286–292 (2003). https://doi.org/10.1007/s00439-003-0963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-0963-z

Keywords

Navigation