Skip to main content
Log in

The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations are associated with cystic fibrosis (CF)-related monosymptomatic conditions, including idiopathic pancreatitis. We evaluated prospectively enrolled patients who had idiopathic recurrent acute pancreatitis or idiopathic chronic pancreatitis, healthy controls, CF heterozygotes, and CF patients (pancreatic insufficient or sufficient) for evidence of CFTR gene mutations and abnormalities of ion transport by sweat chloride and nasal potential difference testing. DNA samples from anonymous blood donors were controls for genotyping. At least one CFTR mutation or variant was carried in 18 of 40 patients (45%) with idiopathic chronic pancreatitis and in 6 of 16 patients (38%) with idiopathic recurrent acute pancreatitis but in only 11 of the 50 controls (22%, P=0.005). Most identified mutations were rare and would not be identified in routine genetic screening. CFTR mutations were identified on both alleles in six patient (11%). Ion transport measurements in patients with pancreatitis showed a wide range of results, from the values in patients with classically diagnosed CF to those in the obligate heterozygotes and healthy controls. In general, ion channel measurements correlated with the number and severity of CFTR mutations. Twelve of 56 patients with pancreatitis (21%) fulfilled current clinical criteria for the diagnosis of CF, but CFTR genotyping alone confirmed the diagnosis in only two of these patients. We concluded that extensive genotyping and ion channel testing are useful to confirm or exclude the diagnosis of CF in the majority of patients with idiopathic pancreatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Welsh MJ, Ramsey BW, Accurso F, Cutting GR (2001) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, (eds) The Metabolic and molecular bases of inherited disease, 8th edn. vol 3. McGraw Hill, New York, pp 5121–5188

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073. Erratum in: Science 245:1437

    Google Scholar 

  • Cystic fibrosis mutation database (2004) Cystic fibrosis genetic analysis consortium. http://www.genet.sickkids.on.ca/cftr/. cited 6 May 2004

  • Kerem E, Corey M, Kerem BS, Rommens J, Markiewicz D, Levison H, et al (1990) The relation between genotype and phenotype in cystic fibrosis: analysis of the most common mutation (ΔF508). N Engl J Med 323:1517–1522

    PubMed  CAS  Google Scholar 

  • Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J, Tsui LC, et al (1992) Genetic determination of exocrine pancreatic function in cystic fibrosis. Am J Hum Genet 50:1178–1184

    PubMed  CAS  Google Scholar 

  • Gaskin K, Gurwitz D, Durie P, Corey M, Levison H, Forstner G (1982) Improved respiratory prognosis in patients with cystic fibrosis with normal fat absorption. J Pediatr 100:857–862

    Article  PubMed  CAS  Google Scholar 

  • Tsui LC (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8:392–398

    PubMed  CAS  Google Scholar 

  • Zielenski J (2000) Genotype and phenotype in cystic fibrosis. Respiration 67:117–133

    Article  PubMed  CAS  Google Scholar 

  • Shwachman H, Lebenthal E, Khaw KT (1975) Recurrent acute pancreatitis in patients with cystic fibrosis with normal pancreatic enzymes. Pediatrics 55:86–95

    PubMed  CAS  Google Scholar 

  • Weizman Z, Durie PR (1988) Acute pancreatitis in childhood. J Pediatr 113:24–29

    Article  PubMed  CAS  Google Scholar 

  • Gross V, Schoelmerich J, Denzel K, Gerok W (1989) Relapsing pancreatitis as initial manifestation of cystic fibrosis in a young man without pulmonary disease. Int J Pancreatol 4:221–228

    PubMed  CAS  Google Scholar 

  • Masaryk TJ, Achkar E (1983) Pancreatitis as initial presentation of cystic fibrosis in young adults: a report of two cases. Dig Dis Sci 28:874–878

    Article  PubMed  CAS  Google Scholar 

  • Durno C, Corey M, Zielenski J, Tullis E, Tsui LC, Durie P (2002) Genotype and phenotype correlations in patients with cystic fibrosis and pancreatitis. Gastroenterology 123:1857–1864

    Article  PubMed  Google Scholar 

  • Steer ML, Waxman I, Freedman S (1995) Chronic pancreatitis. N Engl J Med 332:1482–1490

    Article  PubMed  CAS  Google Scholar 

  • Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS (1998) Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339:653–658

    Article  PubMed  CAS  Google Scholar 

  • Sharer N, Schwarz M, Malone G, Howarth A, Painter J, Super M, et al (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652

    Article  PubMed  CAS  Google Scholar 

  • Castellani C, Bonizzato A, Rolfini R, Frulloni L, Cavallini GC, Mastella G (1999) Increased prevalence of mutations of the cystic fibrosis gene in idiopathic chronic and recurrent pancreatitis [letter]. Am J Gastroenterol 96:1993–1995

    Article  Google Scholar 

  • Arduino C, Gallo M, Brusco A, Garnerone S, Piana MR, Di Maggio S, et al (1999) Polyvariant mutant CFTR genes in patients with chronic pancreatitis. Clin Genet 56:400–404

    Article  PubMed  CAS  Google Scholar 

  • Ockenga J, Stuhrmann M, Ballmann M, Teich N, Keim V, Dork T, et al (2000) Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis. Am J Gastroenterol 95:2061–2067

    Article  PubMed  CAS  Google Scholar 

  • Noone PG, Zhou Z, Silverman LM, Jowell PS, Knowles MR, Cohn JA (2001) Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology 121:1310–1319

    Article  PubMed  CAS  Google Scholar 

  • Orlando RC (1993) Secretin test. In: Drossman DA (eds) Manual of gastroenterologic procedures 3rd edn. Raven Press, New York, pp 68–72

    Google Scholar 

  • Zielenski J, Aznarez I, Onay T, Tzountzouris J, Markiewicz D, Tsui L-C (2002) CFTR mutation detection by multiplex heteroduplex (mHET) analysis on MDE gel. In: Skach WR (eds) Methods in molecular medicine series cystic fibrosis methods and protocols. Humana Press, Totowa, NJ, pp 3–19

    Chapter  Google Scholar 

  • Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG (1993) Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 3:151–156

    Article  PubMed  CAS  Google Scholar 

  • Cuppens H, Lin W, Jaspers M, Costes B, Teng H, Vankeerberghen A, et al (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes: the polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest 101:487–496

    Article  PubMed  CAS  Google Scholar 

  • Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23:545–549

    PubMed  CAS  Google Scholar 

  • Rosenstein BJ, Cutting GR for the Cystic Fibrosis Foundation Consensus Panel (1998) The diagnosis of cystic fibrosis: a consensus statement. J Pediatr 132:589–595

    Google Scholar 

  • Knowles M, Gatzy J, Boucher R (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 305:1489–1495

    PubMed  CAS  Google Scholar 

  • Knowles MR, Paradiso AM, Boucher RC (1995) In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum Gene Ther 6:445–455

    Article  PubMed  CAS  Google Scholar 

  • Thomassen MJ, Demko CA, Doershuk CF (1987) Cystic fibrosis: a review of pulmonary infections and interventions. Pediatr Pulmonol 3:334–351

    Article  PubMed  CAS  Google Scholar 

  • FitzSimmons SC (1993) The changing epidemiology of cystic fibrosis. J Pediatr 122:1–9

    PubMed  CAS  Google Scholar 

  • Groman JD, Hefferon TW, Casals T, Bassas L, Estivill X, Des Georges M, et al (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74:176–179. Epub 2003 Dec 18

    Google Scholar 

  • Chillòn M, Casals T, Mercier B, Bassas L, Lissens W, Silber S, et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332:1475–1480

    Article  PubMed  Google Scholar 

  • Gilbert F (2001) Cystic fibrosis carrier screening: steps in the development of a mutation panel. Genet Test 5:223–227

    Article  PubMed  CAS  Google Scholar 

  • Bombieri C, Giorgi S, Carles S, de Cid R, Belpinati F, Tandoi C, Pallares-Ruiz N, et al (2000) A new approach for identifying non-pathogenic mutations. An analysis of the cystic fibrosis transmembrane regulator gene in normal individuals. Hum Genet 106:172–178

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter S, Macek M, Jr, Davis C, Curristin SM, Chu C-S, Graham C, et al (1993) A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 5:274–278

    Article  PubMed  CAS  Google Scholar 

  • Dork T, Fislage R, Neumann T, Wulf B, Tummler B (1994) Exon 9 of the CFTR gene: splice site haplotypes and cystic fibrosis mutations. Hum Genet 93:67–73

    Article  PubMed  CAS  Google Scholar 

  • Casals T, Aparisi L, Martinez-Costa C, Gimenez J, Ramos MD, Mora J, et al (2004) Different CFTR mutational spectrum in alcoholic and idiopathic chronic pancreatitis? Pancreas 28:374–379

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by The National Institutes of Health (NIH-SCOR [NIDDK 5P50 DK49096]), the United States and Canadian Cystic Fibrosis Foundations, American College of Gastroenterology Clinical Research Award to M.D.B., and Canadian Cystic Fibrosis Foundation Research Fellowship to N.A. This research was supported, in part, by a grant (RR01032) to the Beth Israel Deaconess Medical Center General Clinical Research Center from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Durie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, M.D., Freedman, S.D., Zielenski, J. et al. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis. Hum Genet 118, 372–381 (2005). https://doi.org/10.1007/s00439-005-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0059-z

Keywords

Navigation