Skip to main content
Log in

Pancreatic stellate cells express Toll-like receptors

  • Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Toll-like receptors (TLRs) are proteins involved in recognition of foreign pathogen-associated molecular patterns (PAMPs) and activation of innate immunity. This study aimed to clarify whether pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, expressed TLRs and responded to PAMPs.

Methods

PSCs were isolated from rat pancreas tissue, and expression of TLRs was examined. PSCs were treated with lipoteichoic acid (a ligand for TLR2), polyinosinic-polycytidylic acid (a ligand for TLR3), lipopolysaccharide (a ligand for TLR4), or flagellin (a ligand for TLR5). The effects of the TLR ligands on key cell functions and activation of signaling pathways were examined. The ability of PSCs to perform endocytosis and phagocytosis was also examined.

Results

PSCs expressed TLR2, 3, 4, and 5, as well as the associated molecules CD14 and MD2. All of the TLR ligands activated nuclear factor-κB, and three classes of mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase). TLR ligands induced expression of monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 1 (a rat homolog of interleukin-8), and inducible nitric oxide synthase, but not proliferation or type I collagen production. PSCs could perform fluid-phase and receptor-mediated endocytosis, as well as phagocytosis of Escherichia coli.

Conclusions

PSCs expressed a variety of TLRs and responded to TLR ligands, leading to the activation of signaling pathways and proinflammatory responses. PSCs could process exogenous antigens by endocytosis and phagocytosis. PSCs might play a role in the immune functions of the pancreas through the recognition of PAMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, et al. Periacinar stellate-shaped cells in rat pancreas: identification, isolation and culture. Gut 1998;43:128–133.

    Article  PubMed  CAS  Google Scholar 

  2. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, et al. Identification, culture, and characterization of pancreas stellate cells in rats and humans. Gastroenterology 1998;115:421–432.

    Article  PubMed  CAS  Google Scholar 

  3. Pinzani M. Pancreatic stellate cells: new kids become mature. Gut 2006;55:12–14.

    Article  PubMed  CAS  Google Scholar 

  4. Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 2007;117:50–59.

    Article  PubMed  CAS  Google Scholar 

  5. Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T. Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. J Biol Chem 2002;277:141–147.

    Article  PubMed  CAS  Google Scholar 

  6. Masamune A, Kikuta K, Satoh M, Suzuki N, Shimosegawa T. Protease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells. J Pharmacol Exp Ther 2005;312:651–658.

    Article  PubMed  CAS  Google Scholar 

  7. Shimizu K, Kobayashi M, Tahara J, Shiratori K. Cytokines and peroxisome proliferator-activated receptor gamma ligand regulate phagocytosis by pancreatic stellate cells. Gastroenterology 2005;128:2105–2118.

    Article  PubMed  CAS  Google Scholar 

  8. Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol 2002;14:136–145.

    Article  PubMed  CAS  Google Scholar 

  9. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783–801.

    Article  PubMed  CAS  Google Scholar 

  10. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004;430:257–263.

    Article  PubMed  CAS  Google Scholar 

  11. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999;274:17406–17409.

    Article  PubMed  CAS  Google Scholar 

  12. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001;413:732–738.

    Article  PubMed  CAS  Google Scholar 

  13. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  14. Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M, et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol 2006;7:868–874.

    Article  PubMed  CAS  Google Scholar 

  15. Masamune A, Kikuta K, Satoh M, Kume K, Shimosegawa T. Differential roles of signaling pathways for proliferation and migration of rat pancreatic stellate cells. Tohoku J Exp Med 2003;199:69–84.

    Article  PubMed  CAS  Google Scholar 

  16. Masamune A, Satoh M, Hirabayashi J, Kasai K, Satoh K, Shimosegawa T. Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2006;290:G729–G736.

    Article  PubMed  CAS  Google Scholar 

  17. Kikuta K, Masamune A, Satoh M, Suzuki N, Shimosegawa T. 4-Hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. World J Gastroenterol 2004;10:2344–2351.

    PubMed  CAS  Google Scholar 

  18. Ohashi K, Kim JH, Hara H, Aso R, Akimoto T, Nakama K. WBN/Kob rats. A new spontaneously occurring model of chronic pancreatitis. Int J Pancreatol 1990;6:231–247.

    PubMed  CAS  Google Scholar 

  19. Kawai T, Akira S. TLR signaling. Cell Death Differ 2006;13:816–825.

    Article  PubMed  CAS  Google Scholar 

  20. Masamune A, Kikuta K, Suzuki N, Satoh M, Satoh K, Shimosegawa T. A c-Jun N-terminal kinase inhibitor SP600125 blocks activation of pancreatic stellate cells. J Pharmacol Exp Ther 2004;310:520–527.

    Article  PubMed  CAS  Google Scholar 

  21. Masamune A, Satoh M, Kikuta K, Sakai Y, Satoh A, Shimosegawa T. Inhibition of p38 mitogen-activated protein kinase blocks activation of rat pancreatic stellate cells. J Pharmacol Exp Ther 2003;304:8–14.

    Article  PubMed  CAS  Google Scholar 

  22. Viñas O, Bataller R, Sancho-Bru P, Ginès P, Berenguer C, Enrich C, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003;38:919–929.

    PubMed  Google Scholar 

  23. Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1996;93:14833–14838.

    Article  PubMed  CAS  Google Scholar 

  24. Vonlaufen A, Xu Z, Daniel B, Kumar RK, Pirola R, Wilson J, et al. Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 2007;133:1293–1303.

    Article  PubMed  CAS  Google Scholar 

  25. Hughes J, Liu Y, Van Damme J, Savill J. Human glomerular mesangial cell phagocytosis of apoptotic neutrophils: mediation by a novel CD36-independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J Immunol 1997;158:4389–4397.

    PubMed  CAS  Google Scholar 

  26. Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science 2004;304:1014–1018.

    Article  PubMed  CAS  Google Scholar 

  27. Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to kill. Trends Cell Biol 2006;16:189–197.

    Article  PubMed  CAS  Google Scholar 

  28. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003;83:655–663.

    PubMed  CAS  Google Scholar 

  29. Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006;43:435–443.

    Article  PubMed  CAS  Google Scholar 

  30. Lee MS, Kim YJ. Pattern-recognition receptor signaling initiated from extracellular, membrane, and cytoplasmic space. Mol Cells 2007;23:1–10.

    PubMed  CAS  Google Scholar 

  31. Wallace JL, Miller MJ. Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology 2000;119:512–520.

    Article  PubMed  CAS  Google Scholar 

  32. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 1999;10:29–38.

    Article  PubMed  CAS  Google Scholar 

  33. Fernandez-Ruiz V, González A, López-Moratalla N. Effect of nitric oxide in the differentiation of human monocytes to dendritic cells. Immunol Lett 2004;93:87–95.

    Article  PubMed  CAS  Google Scholar 

  34. Brun P, Castagliuolo I, Pinzani M, Palù G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G571–G578.

    Article  PubMed  CAS  Google Scholar 

  35. Paik YH, Lee KS, Lee HJ, Yang KM, Lee SJ, Lee DK, et al. Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid. Lab Invest 2006;86:676–686.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs BL, Langland JO. When two standards are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 1996;219:339–349.

    Article  PubMed  CAS  Google Scholar 

  37. Jerrells TR, Vidlak D, Strachota JM. Alcoholic pancreatitis: mechanisms of viral infections as cofactors in the development of acute and chronic pancreatitis and fibrosis. J Leukoc Biol 2007;81:430–439.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masamune, A., Kikuta, K., Watanabe, T. et al. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol 43, 352–362 (2008). https://doi.org/10.1007/s00535-008-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2162-0

Key words

Navigation