Skip to main content
Log in

Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn’s disease

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Host–intestinal microbial interaction plays an important role in the pathogenesis of inflammatory bowel diseases (IBDs). The surface molecules of the intestinal epithelium act as receptors for bacterial adhesion and regulate the intestinal bacteria. Some known receptors are the mucosal blood type antigens, which are regulated by the fucosyltransferase2 (FUT2) gene, and individuals who express these antigens in the gastrointestinal tract are called secretors. Recent research has revealed that the FUT2 gene is associated with Crohn’s disease (CD) in western populations.

Methods

To clarify the contribution of mucosal blood type antigens in IBD, we determined the incidence of five previously reported single-nucleotide polymorphisms of the FUT2 gene in Japanese patients. We also used immunohistochemistry to investigate the antigen expression in mucosal specimens from IBD patients and animal models.

Results

Genetic analysis revealed that all of the patients with colonic CD were secretors, whereas the incidence of secretors was 80, 80, 67, and 80%, respectively, for the control, ileocolonic CD, ileal CD, and ulcerative colitis groups (P = 0.036). Abnormal expression of blood type antigens was observed only in colonic CD. Interleukin-10−/− mice, but not dextran sulfate sodium colitis mice, had enhanced colonic expression of blood type antigens, and the expression of these antigens preceded the development of colitis in the interleukin-10−/− mice.

Conclusions

FUT2 secretor status was associated with colonic-type CD. This finding, taken together with the immunohistochemistry data, suggests that the abnormal expression of blood type antigens in the colon may be a unique and essential factor for colonic CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122:44–54.

    Article  PubMed  Google Scholar 

  2. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–9.

    Article  PubMed  Google Scholar 

  3. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566–74.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  PubMed  CAS  Google Scholar 

  5. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–72.

    Article  PubMed  CAS  Google Scholar 

  6. Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol. 1995;269:G613–27.

    PubMed  Google Scholar 

  7. Schwerbrock NM, Makkink MK, van der Sluis M, Buller HA, Einerhand AW, Sartor RB, et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis. 2004;10:811–23.

    Article  PubMed  Google Scholar 

  8. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    Article  PubMed  CAS  Google Scholar 

  9. Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, et al. Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest. 2007;117:3909–21.

    PubMed  CAS  Google Scholar 

  10. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol. 2006;8:1327–36.

    Article  PubMed  CAS  Google Scholar 

  11. Boren T, Falk P, Roth KA, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science. 1993;262:1892–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science. 1998;279:373–7.

    Article  PubMed  CAS  Google Scholar 

  13. Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D, Roche N, et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science. 2004;305:519–22.

    Article  PubMed  CAS  Google Scholar 

  14. Magalhaes A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osorio H, et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology. 2009;19:1525–36.

    Article  PubMed  CAS  Google Scholar 

  15. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology. 2002;122:1967–77.

    Article  PubMed  CAS  Google Scholar 

  16. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9:548–53.

    Article  PubMed  CAS  Google Scholar 

  17. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem. 1995;270:4640–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fujitani N, Liu Y, Toda S, Shirouzu K, Okamura T, Kimura H. Expression of H type 1 antigen of ABO histo-blood group in normal colon and aberrant expressions of H type 2 and H type 3/4 antigens in colon cancer. Glycoconj J. 2000;17:331–8.

    Article  PubMed  CAS  Google Scholar 

  20. Yuan M, Itzkowitz SH, Palekar A, Shamsuddin AM, Phelps PC, Trump BF, et al. Distribution of blood group antigens A, B, H, Lewisa, and Lewisb in human normal, fetal, and malignant colonic tissue. Cancer Res. 1985;45:4499–511.

    PubMed  CAS  Google Scholar 

  21. Koda Y, Soejima M, Liu Y, Kimura H. Molecular basis for secretor type alpha(1,2)-fucosyltransferase gene deficiency in a Japanese population: a fusion gene generated by unequal crossover responsible for the enzyme deficiency. Am J Hum Genet. 1996;59:343–50.

    PubMed  CAS  Google Scholar 

  22. Pang H, Koda Y, Soejima M, Fujitani N, Ogaki T, Saito A, et al. Polymorphism of the human ABO-Secretor locus (FUT2) in four populations in Asia: indication of distinct Asian subpopulations. Ann Hum Genet. 2001;65:429–37.

    Article  PubMed  CAS  Google Scholar 

  23. McGovern DP, Jones MR, Taylor KD, Marciante K, Yan X, Dubinsky M, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum Mol Genet. 2010;19:3468–76.

    Article  PubMed  CAS  Google Scholar 

  24. Silverberg MS, Daly MJ, Moskovitz DN, Rioux JD, McLeod RS, Cohen Z, et al. Diagnostic misclassification reduces the ability to detect linkage in inflammatory bowel disease genetic studies. Gut. 2001;49:773–6.

    Article  PubMed  CAS  Google Scholar 

  25. Holmen JM, Olson FJ, Karlsson H, Hansson GC. Two glycosylation alterations of mouse intestinal mucins due to infection caused by the parasite Nippostrongylus brasiliensis. Glycoconj J. 2002;19:67–75.

    Article  PubMed  CAS  Google Scholar 

  26. Hurd EA, Holmen JM, Hansson GC, Domino SE. Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. Glycobiology. 2005;15:1002–7.

    Article  PubMed  CAS  Google Scholar 

  27. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94.

    Article  PubMed  CAS  Google Scholar 

  29. Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, et al. Crohn’s disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med. 2009;206:2179–89.

    Article  PubMed  CAS  Google Scholar 

  30. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  PubMed  CAS  Google Scholar 

  31. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  PubMed  CAS  Google Scholar 

  32. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357:1925–8.

    Article  PubMed  CAS  Google Scholar 

  33. Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takahashi S, Ogura Y, et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology. 2002;123:86–91.

    Article  PubMed  CAS  Google Scholar 

  34. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  PubMed  CAS  Google Scholar 

  35. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31.

    PubMed  CAS  Google Scholar 

  36. Sydora BC, Macfarlane SM, Walker JW, Dmytrash AL, Churchill TA, Doyle J, et al. Epithelial barrier disruption allows nondisease-causing bacteria to initiate and sustain IBD in the IL-10 gene-deficient mouse. Inflamm Bowel Dis. 2007;13:947–54.

    Article  PubMed  Google Scholar 

  37. Kim SC, Tonkonogy SL, Albright CA, Tsang J, Balish EJ, Braun J, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128:891–906.

    Article  PubMed  CAS  Google Scholar 

  38. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–7.

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto K, Miwa T, Taniguchi H, Nagano T, Shimamura K, Tanaka T, et al. Binding specificity of Lactobacillus to glycolipids. Biochem Biophys Res Commun. 1996;228:148–52.

    Article  PubMed  CAS  Google Scholar 

  40. Moorthy G, Murali MR, Niranjali Devaraj S. Lactobacilli inhibit Shigella dysenteriae 1 induced pro-inflammatory response and cytotoxicity in host cells via impediment of Shigella-host interactions. Dig Liver Dis. 2010;42:33–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Keio University Grant-in-Aid for Encouragement of Young Medical Scientists, and KORP project from Otsuka Pharmaceutical Co., Ltd.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Hibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyoshi, J., Yajima, T., Okamoto, S. et al. Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn’s disease. J Gastroenterol 46, 1056–1063 (2011). https://doi.org/10.1007/s00535-011-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0425-7

Keywords

Navigation