Skip to main content
Log in

Identification of disulfide reductases in Campylobacterales: a bioinformatics investigation

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Disulfide reductases of host-colonising bacteria are involved in the expression of virulence factors, resistance to drugs, and elimination of toxic compounds. Large-scale genome analyses of 281 prokaryotes identified CXXC and CXXC-derived motifs in each microorganism. The total number of these motifs showed correlations with genome size and oxygen tolerance of the prokaryotes. Specific bioinformatic analyses served to identify putative disulfide reductases in the Campylobacterales Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes and Arcobacter butzleri which colonise the gastrointestinal tract of higher animals. Three filters applied to the genomes of these species yielded 35, 25, 28 and 34 genes, respectively, encoding proteins with the characteristics of disulfide reductases. Ten proteins were common to the four species, including four belonging to the thioredoxin system. The presence of thioredoxin reductase activities was detected in the four bacterial species by observing dithiobis-2-nitrobenzoic acid reduction with β-nicotinamide adenine dinucleotide phosphate as cofactor. Phylogenetic analyses of the thioredoxin reductases TrxB1 and TrxB2 of the four Campylobacterales were performed. Their TrxB1 proteins were more closely related to those of Firmicutes than to the corresponding proteins of other Proteobacteria. The Campylobacterales TrxB2 proteins were closer to glutathione reductases of other organisms than to their respective TrxB1 proteins. The phylogenetic features of the Campylobacterales thioredoxin reductases suggested a special role for these enzymes in the physiology of these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcon T, Domingo D, Lopez-Brea M (1999) Antibiotic resistance problems with Helicobacter pylori. Int J Antimicrob Agents 12:19–26

    Article  PubMed  CAS  Google Scholar 

  • Baar C, Eppinger M, Raddatz G et al (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci USA 100:11690–11695

    Article  PubMed  CAS  Google Scholar 

  • Bohr UR, Segal I, Primus A, Wex T, Hassan H, Ally R, Malfertheiner P (2003) Detection of a putative novel Wolinella species in patients with squamous cell carcinoma of the esophagus. Helicobacter 8:608–612

    Article  PubMed  Google Scholar 

  • Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066

    Article  PubMed  CAS  Google Scholar 

  • Davioud-Charvet E, McLeish MJ, Veine DM et al (2003) Mechanism-based inactivation of thioredoxin reductase from Plasmodium falciparum by Mannich bases. Implication for cytotoxicity. Biochemistry 42:13319–13330

    Article  PubMed  CAS  Google Scholar 

  • Donachie SP, Bowman JP, On SL, Alam M (2005) Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 55:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Ellis WA, Neill SD, O’Brien JJ, Ferguson HW, Hanna J (1977) Isolation of Spirillum/Vibrio-like organisms from bovine fetuses. Vet Res 100:451–452

    CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fomenko DE, Gladyshev VN (2003) Identity and functions of CXXC-derived motifs. Biochemistry 42:11214–11225

    Article  PubMed  CAS  Google Scholar 

  • Fox JG (2002) The non-H pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut 50:273–283

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35–54

    Article  PubMed  Google Scholar 

  • Hayashi S, Abe M, Kimoto M, Furukawa S, Nakazawa T (2000) The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol Immunol 44:41–50

    PubMed  CAS  Google Scholar 

  • Hsueh PR, Teng LJ, Yang PC, Wang SK, Chang SC, Ho SW, Hsieh WC, Luh KT (1997) Bacteremia caused by Arcobacter cryaerophilus 1B. J Clin Microbiol 35:489–491

    PubMed  CAS  Google Scholar 

  • Kaakoush NO, Mendz GL (2005) Helicobacter pylori disulphide reductases: role in metronidazole reduction. FEMS Immunol Med Microbiol 44:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kiehlbauch JA, Brenner DJ, Nicholson MA, Baker CN, Patton CM, Steigerwalt AG, Wachsmuth IK (1991) Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J Clin Microbiol 29:376–385

    PubMed  CAS  Google Scholar 

  • Kortemme T, Creighton TE (1995) Ionisation of cysteine residues at the termini of model α-helical peptides. Relevance to unusual thiol pK a values in proteins of the thioredoxin family. J Mol Biol 253:799–812

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing Eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  Google Scholar 

  • Leong JM, Morrissey PE, Isberg RR (1993) A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. J Biol Chem 268:20524–20532

    PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142-D144

    Article  PubMed  CAS  Google Scholar 

  • Major TA, Burd H, Whitman WB (2004) Abundance of 4Fe–4S motifs in the genomes of methanogens and other prokaryotes. FEMS Microbiol Lett 239:117–123

    Article  PubMed  CAS  Google Scholar 

  • Marshall BJ, Warren JR (1983) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315

    Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  • Mendz GL, Mégraud F (2002) Is the molecular basis of metronidazole resistance in microaerophilic organisms understood? Trends Microbiol 10:370–375

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Okada N, Danbara H (2004) Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J Biol Chem 279:34631–34642

    Article  PubMed  CAS  Google Scholar 

  • Moore JE, Corcoran D, Dooley JSG et al (2005) Campylobacter. Vet Res 36:351–382

    Article  PubMed  CAS  Google Scholar 

  • Moore MJ, Miller SM, Walsh CT (1992) C-terminal cysteines of Tn501 mercuric ion reductase. Biochemistry 31:1677–1685

    Article  PubMed  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK et al (2005) InterPro, progress and status in 2005. Nucleic Acids Res 33:D201–D205

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632

    Article  PubMed  CAS  Google Scholar 

  • Patel MP, Marcinkeviciene J, Blanchard JS (1998) Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric O2 conditions. FEMS Microbiol Lett 166:155–163

    Article  PubMed  CAS  Google Scholar 

  • Rosato V, Pucello N, Giuliano G (2002) Evidence for cysteine clustering in thermophilic proteomes. Trends Genet 18:278–281

    Article  PubMed  CAS  Google Scholar 

  • Roy C, Lancaster D, Simon J (2002) Succinate:quinone oxidoreductases from epsilon-proteobacteria. Biochim Biophys Acta 1553:84–101

    Article  Google Scholar 

  • Takai K, Campbell BJ, Cary SC et al (2005) enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of epsilon proteobacteria. Appl Environ Microbiol 71:7310–7320

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Trend MA, Jorgensen MA, Hazell SL, Mendz GL (2001) Oxidases and reductases are involved in metronidazole sensitivity in Helicobacter pylori. Int J Biochem Cell Biol 33:143–153

    Article  PubMed  CAS  Google Scholar 

  • Warren JR (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1:1273–1275

    Google Scholar 

  • Williams CH, Arscott LD, Muller S et al (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267:6110–6117

    Article  PubMed  CAS  Google Scholar 

  • Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD (2002) Characterization of an Autotrophic Sulfide-Oxidizing Marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68:316–325

    Article  PubMed  CAS  Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic Vibrio, Vibrio succinogenes, sp. n. J Bacteriol 81:911–917

    PubMed  CAS  Google Scholar 

  • Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by the support of the Australian Research Council and by grants SFB621/B8 from the Deutsche Forschungsgemeinschaft and PTJ-BIO 031U213B from the BMBF Competence Center PathoGenoMik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Louis Mendz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaakoush, N.O., Sterzenbach, T., Miller, W.G. et al. Identification of disulfide reductases in Campylobacterales: a bioinformatics investigation. Antonie van Leeuwenhoek 92, 429–441 (2007). https://doi.org/10.1007/s10482-007-9171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9171-5

Keywords

Navigation