Skip to main content

Advertisement

Log in

Inflammation-mediated promotion of invasion and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Inflammation has been suggested to represent the seventh hallmark of cancer. Myelomonocytic cells are a key component of cancer-related inflammation. Tumor-associated macrophages and their mediators affect key elements in the multistep process of invasion and metastasis, from interaction with the extracellular matrix to the construction of a pre-metastatic niche. Evidence indicating that inflammatory mediators affect genetic stability and cause persistent epigenetic alterations suggests that inflammatory components of the tumor microenvironment impacts on fundamental mechanisms responsible for the generation of metastatic variants. These results provide impetus for efforts aimed at translating cancer-related inflammation into diagnostic–prognostic markers and innovative therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.

    Article  CAS  PubMed  Google Scholar 

  2. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.

    Article  CAS  PubMed  Google Scholar 

  4. Mantovani, A. (2009). Cancer: inflaming metastasis. Nature, 457, 36–37.

    Article  CAS  PubMed  Google Scholar 

  5. De Palma, M., Murdoch, C., Venneri, M. A., Naldini, L., & Lewis, C. E. (2007). Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 28, 519–524.

    Article  PubMed  Google Scholar 

  6. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 22, 231–237.

    Google Scholar 

  7. Pollard, J. W. (2009). Trophic macrophages in development and disease. Nat Rev Immunol, 9, 259–270.

    Article  CAS  PubMed  Google Scholar 

  8. Bollrath, J., & Greten, F. R. (2009). IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep, 10, 1314–1319.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, D., Dubois, R. N., & Richmond, A. (2009). The role of chemokines in intestinal inflammation and cancer. Curr Opin Pharmacol, 9, 688–696.

    Article  CAS  PubMed  Google Scholar 

  10. Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev, 22, 559–574.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9, 798–809.

    Article  CAS  PubMed  Google Scholar 

  12. Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441, 431–436.

    Article  CAS  PubMed  Google Scholar 

  13. Balkwill, F. (2009). Tumour necrosis factor and cancer. Nat Rev Cancer, 9, 361–371.

    Article  CAS  PubMed  Google Scholar 

  14. Giavazzi, R., Garofalo, A., Bani, M. R., Abbate, M., Ghezzi, P., Boraschi, D., et al. (1990). Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res, 50, 4771–4775.

    CAS  PubMed  Google Scholar 

  15. Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  16. Niwa, T., Tsukamoto, T., Toyoda, T., Mori, A., Tanaka, H., Maekita, T., et al. (2010). Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res, 70, 1430–1440.

    Article  CAS  PubMed  Google Scholar 

  17. Barash, H., Gross, E., Edrei, Y., Ella, E., Israel, A., Cohen, I., et al. (2010). Accelerated carcinogenesis following liver regeneration is associated with chronic inflammation-induced double-strand DNA breaks. Proc Natl Acad Sci U S A, 107, 2207–2212.

    Article  CAS  PubMed  Google Scholar 

  18. Ishii, M., Wen, H., Corsa, C. A., Liu, T., Coelho, A. L., Allen, R. M., et al. (2009). Epigenetic regulation of the alternatively activated macrophage phenotype. Blood, 114, 3244–3254.

    Article  CAS  PubMed  Google Scholar 

  19. Mantovani, A., & Locati, M. (2009). Orchestration of macrophage polarization. Blood, 114, 3135–3136.

    Article  CAS  PubMed  Google Scholar 

  20. Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139, 693–706.

    Article  CAS  PubMed  Google Scholar 

  21. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer, 3, 453–458.

    Article  CAS  PubMed  Google Scholar 

  22. Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., et al. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res, 69, 4800–4809.

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549–555.

    Article  CAS  PubMed  Google Scholar 

  24. Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 27, 451–483.

    Article  CAS  PubMed  Google Scholar 

  25. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol, 184, 702–712.

    Article  CAS  PubMed  Google Scholar 

  26. Wilcox, R. A., Wada, D. A., Ziesmer, S. C., Elsawa, S. F., Comfere, N. I., Dietz, A. B., et al. (2009). Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood, 114, 2936–2944.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Y., Cai, Z., Wang, S., Zhang, X., Qian, J., Hong, S., et al. (2009). Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood, 114, 3625–3628.

    Article  CAS  PubMed  Google Scholar 

  28. Jaiswal, S., Jamieson, C. H., Pang, W. W., Park, C. Y., Chao, M. P., Majeti, R., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.

    Article  CAS  PubMed  Google Scholar 

  29. Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15, 35–44.

    Article  CAS  PubMed  Google Scholar 

  30. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol, 176, 5023–5032.

    CAS  PubMed  Google Scholar 

  31. Kim, S., Takahashi, H., Lin, W.-W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma produced factors activate myeloid cells via TLR2 to stimulate metastasis. Nature, 457, 102–106.

    Article  CAS  PubMed  Google Scholar 

  32. Kuang, D. M., Wu, Y., Chen, N., Cheng, J., Zhuang, S. M., & Zheng, L. (2007). Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood, 110, 587–595.

    Article  CAS  PubMed  Google Scholar 

  33. Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 65, 5278–5283.

    Article  CAS  PubMed  Google Scholar 

  34. Priceman, S. J., Sung, J. L., Shaposhnik, Z., Burton, J. B., Torres-Collado, A. X., Moughon, D. L., et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood, 115, 1461–1471.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J., Patel, L., & Pienta, K. J. (2010). CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev, 21, 41–48.

    Article  CAS  PubMed  Google Scholar 

  36. Dehmel, S., Wang, S., Schmidt, C., Kiss, E., Loewe, R. P., Chilla, S., et al. (2010). Chemokine receptor Ccr5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome. Eur J Immunol, 40, 267–278.

    Article  CAS  PubMed  Google Scholar 

  37. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and IL-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem, 284, 34342–34354.

    Article  CAS  PubMed  Google Scholar 

  38. Balkwill, F., & Mantovani, A. (2010). Cancer and Inflammation: Implications for Pharmacology and Therapeutics. Clin Pharmacol Ther (in press).

  39. Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med, 204, 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  40. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.

    Article  CAS  PubMed  Google Scholar 

  41. de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.

    Article  PubMed  Google Scholar 

  42. Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.

    Article  CAS  PubMed  Google Scholar 

  43. Markiewski, M. M., DeAngelis, R. A., Benencia, F., Ricklin-Lichtsteiner, S. K., Koutoulaki, A., Gerard, C., et al. (2008). Modulation of the antitumor immune response by complement. Nat Immunol, 9, 1225–1235.

    Article  CAS  PubMed  Google Scholar 

  44. Erez, N., Truitt, M., Olson, P., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17, 135–147.

    Article  CAS  PubMed  Google Scholar 

  45. Cassatella, M. A., Locati, M., & Mantovani, A. (2009). Never underestimate the power of a neutrophil. Immunity, 31, 698–700.

    Article  CAS  PubMed  Google Scholar 

  46. Mantovani, A. (2009). The yin-yang of tumor-associated neutrophils. Cancer Cell, 16, 173–174.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31, 761–771.

    Article  CAS  PubMed  Google Scholar 

  48. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A, 103, 12493–12498.

    Article  CAS  PubMed  Google Scholar 

  49. Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. J Exp Med, 181, 435–440.

    Article  CAS  PubMed  Google Scholar 

  50. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-beta: “N1” versus “N2” TAN—a new paradigm? Cancer Cell, 16, 183–194.

    Article  CAS  PubMed  Google Scholar 

  51. Balkwill, F. (2004). Cancer and the chemokine network. Nat Rev Cancer, 4, 540–550.

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen, D. X., Chiang, A. C., Zhang, X. H., Kim, J. Y., Kris, M. G., Ladanyi, M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell, 138, 51–62.

    Article  CAS  PubMed  Google Scholar 

  53. Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol, 8, 1369–1375.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Res, 66, 11089–11093.

    Article  CAS  PubMed  Google Scholar 

  55. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    Article  CAS  PubMed  Google Scholar 

  56. Murdoch, C., Muthana, M., Coffelt, S. B., & Lewis, C. E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 8, 618–631.

    Article  CAS  PubMed  Google Scholar 

  57. Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133, 66–77.

    Article  CAS  PubMed  Google Scholar 

  58. Barleon, B., Sozzani, S., Zhou, D., Weich, H. A., Mantovani, A., & Marme, D. (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87, 3336–3343.

    CAS  PubMed  Google Scholar 

  59. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.

    Article  CAS  PubMed  Google Scholar 

  60. Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., et al. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev, 24, 241–255.

    Article  CAS  PubMed  Google Scholar 

  61. Ding, T., Xu, J., Wang, F., Shi, M., Zhang, Y., Li, S. P., et al. (2009). High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol, 40, 381–389.

    Article  CAS  PubMed  Google Scholar 

  62. Kuang, D. M., Zhao, Q., Peng, C., Xu, J., Zhang, J. P., Wu, C., et al. (2009). Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 206, 1327–1337.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., et al. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol, 50, 980–989.

    Article  CAS  PubMed  Google Scholar 

  64. DeVita, V. T., Jr., & Costa, J. (2010). Toward a personalized treatment of Hodgkin's disease. N Engl J Med, 362, 942–943.

    Article  CAS  PubMed  Google Scholar 

  65. Steidl, C., Lee, T., Shah, S. P., Farinha, P., Han, G., Nayar, T., et al. (2010). Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med, 362, 875–885.

    Article  CAS  PubMed  Google Scholar 

  66. Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: form homeostasis to inflammation, cancer and metastasis. Cancer Metastasis Reviews, in press (this issue).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani.

Additional information

This work was supported by Associazione Italiana per la Ricerca sul Cancro and Ministero della Salute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solinas, G., Marchesi, F., Garlanda, C. et al. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 29, 243–248 (2010). https://doi.org/10.1007/s10555-010-9227-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9227-2

Keywords

Navigation