Skip to main content

Advertisement

Log in

Role of the EpCAM (CD326) in prostate cancer metastasis and progression

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell–cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

Adv:

Adenovirus

AR:

Androgen receptor

BPH:

Benign prostate hyperplasia

bsAb:

Bispecific antibody

CaP:

Prostate cancer

CAS:

Cancer-associated stroma

CD326:

Epithelial cell adhesion molecule

CDC:

Complement-dependent cytotoxicity

CPTCs:

Circulating prostate tumour cells

CRPC:

Castration-resistant prostate cancer

CSCs:

Cancer stem cells

CTCs:

Circulating tumour cells

DARPin:

Designed ankyrin repeat protein

DTX:

Docetaxel

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EpCAM:

Epithelial cell adhesion molecule

EpEx:

EpCAM Extracellular domain

EpICD:

EpCAM Intracellular domain

EPR:

Enhanced permeability and retention

FcγR:

Fcγ Receptors

FDA:

Food and drug administration

GFP:

Green fluorescent protein

HGPIN:

High-grade prostatic intraepithelial neoplasias

i.p.:

Intraperitoneal

IHC:

Immunohistochemistry

MAbs:

Monoclonal antibodies

MDR:

Minimum residual disease

NOD/SCID:

Non-obese diabetic/severe combined immunodeficient

PSA:

Prostate-specific antigen

RIP:

Regulated intramembrane proteolysis

RP:

Radical prostatectomy

SCID:

Severe combined immunodeficient

siRNA:

Short interfering RNA

TAAs:

Tumour-associated antigens

TMA:

Tissue microarrays

TY:

Thyroglobulin

VEGF:

Vascular endothelial growth factor

References

  1. Beltran, H., Beer, T. M., Carducci, M. A., de Bono, J., Gleave, M., Hussain, M., et al. (2011). New therapies for castration-resistant prostate cancer: efficacy and safety. European Urology, 60, 279–290.

    PubMed  CAS  Google Scholar 

  2. Logothetis, C. J. (2002). Docetaxel in the integrated management of prostate cancer. Current applications and future promise. Oncology (Williston Park, N.Y.), 16(6 Suppl 6), 63–72.

    Google Scholar 

  3. Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England Journal of Medicine, 351(15), 1513–1520.

    PubMed  CAS  Google Scholar 

  4. Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351, 1502–1512.

    PubMed  CAS  Google Scholar 

  5. Calabro, F., & Sternberg, C. N. (2007). Current indications for chemotherapy in prostate cancer patients. European Urology, 51, 17–26.

    PubMed  CAS  Google Scholar 

  6. Petrylak, D. P. (2005). Future directions in the treatment of androgen-independent prostate cancer. Urology, 65(6 Suppl), 8–12.

    PubMed  Google Scholar 

  7. Higano, C. S., & Crawford, E. D. (2011). New and emerging agents for the treatment of castration-resistant prostate cancer. Urologic Oncology, 29(6 Suppl), S1–S8.

    PubMed  CAS  Google Scholar 

  8. Caffo, O., Pappagallo, G., Brugnara, S., Caldara, A., di Pasquale, M. C., Ferro, A., et al. (2012). Multiple rechallenges for castration-resistant prostate cancer patients responding to first-line docetaxel: assessment of clinical outcomes and predictive factors. Urology, 79, 644–649.

    PubMed  Google Scholar 

  9. Hao, J. L., Cozzi, P. J., Khatri, A., Power, C. A., & Li, Y. (2010). CD147/EMMPRIN and CD44 are potential therapeutic target for metastatic prostate cancer. Current Cancer Drug Targets, 10, 287–306.

    PubMed  CAS  Google Scholar 

  10. Li, Y., Cozzi, P. J., & Russell, P. J. (2010). Promising tumor-associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 30, 67–101.

    PubMed  Google Scholar 

  11. Li, Y., & Cozzi, P. J. (2010). Angiogenesis as a strategic target for prostate cancer therapy. Medicinal Research Reviews, 30, 23–66.

    PubMed  CAS  Google Scholar 

  12. Mukherji, D., Pezaro, C. J., & De-Bono, J. S. (2012). MDV3100 for the treatment of prostate cancer. Expert Opinion on Investigational Drugs, 21, 227–233.

    PubMed  CAS  Google Scholar 

  13. Villanueva, C., Bazan, F., Kim, S., Demarchi, M., Chaigneau, L., Thiery-Vuillemin, A., et al. (2011). Cabazitaxel: a novel microtubule inhibitor. Drugs, 71, 1251–1258.

    PubMed  CAS  Google Scholar 

  14. Bellmunt, J., Attard, G., Bahl, A., Huland, H., Klotz, L., Kuban, D., et al. (2012). Advances in the management of high-risk localised and metastatic prostate cancer. British Journal of Urology International, 109(Suppl 2), 8–13.

    Google Scholar 

  15. Baeuerle, P. A., & Gires, O. (2007). EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 96, 417–423.

    PubMed  CAS  Google Scholar 

  16. Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38, 68–75.

    PubMed  CAS  Google Scholar 

  17. Went, P., Vasei, M., Bubendorf, L., Terracciano, L., Tornillo, L., Riede, U., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British Journal of Cancer, 94, 128–135.

    PubMed  CAS  Google Scholar 

  18. Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.

    PubMed  CAS  Google Scholar 

  19. Trzpis, M., McLaughlin, P. M., de Leij, L. M., & Harmsen, M. C. (2007). Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. The American Journal of Pathology, 171, 386–395.

    PubMed  CAS  Google Scholar 

  20. van der Gun, B. T., Melchers, L. J., Ruiters, M. H., de Leij, L. F., McLaughlin, P. M., & Rots, M. G. (2010). EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 31, 1913–1921.

    PubMed  Google Scholar 

  21. Seligson, D. B., Pantuck, A. J., Liu, X., Huang, Y., Horvath, S., Bui, M. H., et al. (2004). Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clinical Cancer Research, 10, 2659–2669.

    PubMed  CAS  Google Scholar 

  22. Songun, I., Litvinov, S. V., van de Velde, C. J., Pals, S. T., Hermans, J., & van Krieken, J. H. (2005). Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. British Journal of Cancer, 92, 1767–1772.

    PubMed  CAS  Google Scholar 

  23. Ensinger, C., Kremser, R., Prommegger, R., Spizzo, G., & Schmid, K. W. (2006). EpCAM overexpression in thyroid carcinomas: a histopathological study of 121 cases. Journal of Immunotherapy, 29, 569–573.

    PubMed  CAS  Google Scholar 

  24. Kimura, H., Kato, H., Faried, A., Sohda, M., Nakajima, M., Fukai, Y., et al. (2007). Prognostic significance of EpCAM expression in human esophageal cancer. International Journal of Oncology, 30, 171–179.

    PubMed  CAS  Google Scholar 

  25. Hwang, E. Y., Yu, C. H., Cheng, S. J., Chang, J. Y., Chen, H. M., & Chiang, C. P. (2009). Decreased expression of Ep-CAM protein is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine, 38, 87–93.

    Google Scholar 

  26. Spizzo, G., Went, P., Dirnhofer, S., Obrist, P., Simon, R., Spichtin, H., et al. (2004). High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Research and Treatment, 86, 207–213.

    PubMed  CAS  Google Scholar 

  27. Varga, M., Obrist, P., Schneeberger, S., Muhlmann, G., Felgel-Farnholz, C., Fong, D., et al. (2004). Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clinical Cancer Research, 10, 3131–3136.

    PubMed  CAS  Google Scholar 

  28. Brunner, A., Prelog, M., Verdorfer, I., Tzankov, A., Mikuz, G., & Ensinger, C. (2008). EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. Journal of Clinical Pathology, 61, 307–310.

    PubMed  CAS  Google Scholar 

  29. Fong, D., Steurer, M., Obrist, P., Barbieri, V., Margreiter, R., Amberger, A., et al. (2008). Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. Journal of Clinical Pathology, 61, 31–35.

    PubMed  CAS  Google Scholar 

  30. Nubel, T., Preobraschenski, J., Tuncay, H., Weiss, T., Kuhn, S., Ladwein, M., et al. (2009). Claudin-7 regulates EpCAM-mediated functions in tumor progression. Molecular Cancer Research, 7, 285–299.

    PubMed  Google Scholar 

  31. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8, 755–768.

    PubMed  CAS  Google Scholar 

  32. Osta, W. A., Chen, Y., Mikhitarian, K., Mitas, M., Salem, M., Hannun, Y. A., et al. (2004). EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Research, 64, 5818–5824.

    PubMed  CAS  Google Scholar 

  33. Maetzel, D., Denzel, S., Mack, B., Canis, M., Went, P., Benk, M., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.

    PubMed  CAS  Google Scholar 

  34. Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69, 5627–5629.

    PubMed  CAS  Google Scholar 

  35. Maaser, K., & Borlak, J. (2008). A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. British Journal of Cancer, 99, 1635–1643.

    PubMed  CAS  Google Scholar 

  36. Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27, 1782–1791.

    PubMed  CAS  Google Scholar 

  37. Benko, G., Spajic, B., Kruslin, B., Tomas, D. (2012). Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urologic Oncology (in press).

  38. Tewes, M., Aktas, B., Welt, A., Mueller, S., Hauch, S., Kimmig, R., et al. (2009). Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Research and Treatment, 115, 581–590.

    PubMed  Google Scholar 

  39. Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.

    PubMed  CAS  Google Scholar 

  40. Mostert, B., Sleijfer, S., Foekens, J. A., & Gratama, J. W. (2009). Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treatment Reviews, 35, 463–474.

    PubMed  CAS  Google Scholar 

  41. Kaiser, J. (2010). Medicine. Cancer's circulation problem. Science, 327, 1072–1074.

    PubMed  CAS  Google Scholar 

  42. Miller, M. C., Doyle, G. V., & Terstappen, L. W. (2010). Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. Journal of Oncology, 2010, 617421.

    PubMed  Google Scholar 

  43. Morgan, T. M., Lange, P. H., & Vessella, R. L. (2007). Detection and characterization of circulating and disseminated prostate cancer cells. Frontiers in Bioscience, 12, 3000–3009.

    PubMed  CAS  Google Scholar 

  44. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235–1239.

    PubMed  CAS  Google Scholar 

  45. Stott, S. L., Hsu, C. H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., et al. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107, 18392–18397.

    PubMed  CAS  Google Scholar 

  46. Smerage, J. B., & Hayes, D. F. (2006). The measurement and therapeutic implications of circulating tumour cells in breast cancer. British Journal of Cancer, 94, 8–12.

    PubMed  CAS  Google Scholar 

  47. Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65, 713–718.

    PubMed  Google Scholar 

  48. Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., et al. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13, 7053–7058.

    PubMed  CAS  Google Scholar 

  49. Garcia, J. A., Rosenberg, J. E., Weinberg, V., Scott, J., Frohlich, M., Park, J. W., et al. (2007). Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. British Journal of Urology International, 99, 519–524.

    Google Scholar 

  50. de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., et al. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.

    PubMed  Google Scholar 

  51. Jost, M., Day, J. R., Slaughter, R., Koreckij, T. D., Gonzales, D., Kinnunen, M., et al. (2010). Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood. Molecular Cancer, 9, 174.

    PubMed  Google Scholar 

  52. Kolostova, K., Pinterova, D., Hoffman, R. M., & Bobek, V. (2011). Circulating human prostate cancer cells from an orthotopic mouse model rapidly captured by immunomagnetic beads and imaged by GFP expression. Anticancer Research, 31, 1535–1539.

    PubMed  CAS  Google Scholar 

  53. Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., et al. (2011). A direct comparison of Cell Search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. British Journal of Cancer, 105, 847–853.

    PubMed  CAS  Google Scholar 

  54. Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clinical Cancer Research, 13, 920–928.

    PubMed  CAS  Google Scholar 

  55. Wang, S., Owens, G. E., & Tseng, H. R. (2011). Nano “fly paper” technology for the capture of circulating tumor cells. Methods in Molecular Biology, 726, 141–150.

    PubMed  CAS  Google Scholar 

  56. Hoshino, K., Huang, Y. Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., et al. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11, 3449–3457.

    PubMed  CAS  Google Scholar 

  57. Zheng, X., Cheung, L. S., Schroeder, J. A., Jiang, L., & Zohar, Y. (2011). A high-performance microsystem for isolating circulating tumor cells. Lab on a Chip, 11, 3269–3276.

    PubMed  CAS  Google Scholar 

  58. Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., et al. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83, 2301–2309.

    PubMed  CAS  Google Scholar 

  59. Poczatek, R. B., Myers, R. B., Manne, U., Oelschlager, D. K., Weiss, H. L., Bostwick, D. G., et al. (1999). Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. The Journal of Urology, 162, 1462–1466.

    PubMed  CAS  Google Scholar 

  60. Went, P. T., Lugli, A., Meier, S., Bundi, M., Mirlacher, M., Sauter, G., et al. (2004). Frequent EpCam protein expression in human carcinomas. Human Pathology, 35, 122–128.

    PubMed  CAS  Google Scholar 

  61. Zellweger, T., Ninck, C., Bloch, M., Mirlacher, M., Koivisto, P. A., Helin, H. J., et al. (2005). Expression patterns of potential therapeutic targets in prostate cancer. International Journal of Cancer, 113, 619–628.

    CAS  Google Scholar 

  62. Cunha, G. R., Ricke, W., Thomson, A., Marker, P. C., Risbridger, G., Hayward, S. W., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.

    PubMed  CAS  Google Scholar 

  63. Ghosh, K., & Ingber, D. E. (2007). Micromechanical control of cell and tissue development: implications for tissue engineering. Advanced Drug Delivery Reviews, 59, 1306–1318.

    PubMed  CAS  Google Scholar 

  64. Chung, L. W. (2005). Better to give than receive: my exciting journey in science. Cancer Biology & Therapy, 4, 348–352.

    Google Scholar 

  65. Mukherjee, S., Richardson, A. M., Rodriguez-Canales, J., Ylaya, K., Erickson, H. S., Player, A., et al. (2009). Identification of EpCAM as a molecular target of prostate cancer stroma. The American Journal of Pathology, 175, 2277–2287.

    PubMed  CAS  Google Scholar 

  66. Furusato, B., Tsunoda, T., Shaheduzzaman, S., Nau, M. E., Vahey, M., Petrovics, G., et al. (2010). Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology. Urology, 75, 768–772.

    PubMed  Google Scholar 

  67. Sung, S. Y., & Chung, L. W. (2002). Prostate tumor–stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 70, 506–521.

    PubMed  CAS  Google Scholar 

  68. Richardson, A. M., Woodson, K., Wang, Y., Rodriguez-Canales, J., Erickson, H. S., Tangrea, M. A., et al. (2007). Global expression analysis of prostate cancer-associated stroma and epithelia. Diagnostic Molecular Pathology, 16, 189–197.

    PubMed  CAS  Google Scholar 

  69. Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23, 5748–5758.

    PubMed  Google Scholar 

  70. Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3, 859–868.

    PubMed  CAS  Google Scholar 

  71. Sankpal, N. V., Mayfield, J. D., Willman, M. W., Fleming, T. P., & Gillanders, W. E. (2011). Activator protein 1 (AP-1) contributes to EpCAM-dependent breast cancer invasion. Breast Cancer Research, 13, R124.

    PubMed  CAS  Google Scholar 

  72. Gostner, J. M., Fong, D., Wrulich, O. A., Lehne, F., Zitt, M., Hermann, M., et al. (2011). Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer, 11, 45.

    PubMed  CAS  Google Scholar 

  73. Carpenter, G., & Red Brewer, M. (2009). EpCAM: another surface-to-nucleus missile. Cancer Cell, 15, 165–166.

    PubMed  CAS  Google Scholar 

  74. Denzel, S., Maetzel, D., Mack, B., Eggert, C., Barr, G., & Gires, O. (2009). Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer, 9, 402.

    PubMed  Google Scholar 

  75. Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., et al. (2002). In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. International Journal of Cancer, 100, 101–110.

    CAS  Google Scholar 

  76. Kurtz, J. E., & Dufour, P. (2010). Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opinion on Biological Therapy, 10, 951–958.

    PubMed  CAS  Google Scholar 

  77. Gires, O., & Bauerle, P. A. (2010). EpCAM as a target in cancer therapy. Journal of Clinical Oncology, 28(15), e239–240. author reply e241–e232.

    PubMed  Google Scholar 

  78. Bellati, F., Napoletano, C., Gasparri, M. L., Visconti, V., Zizzari, I. G., Ruscito, I., et al. (2011). Monoclonal antibodies in gynecological cancer: a critical point of view. Clinical & Developmental Immunology, 2011, 890758.

    Google Scholar 

  79. Groth, A., Salnikov, A. V., Ottinger, S., Gladkich, J., Liu, L., Kallifatidis, G., et al. (2012). New gene-immunotherapy combining TRAIL-lymphocytes and EpCAMxCD3 bispecific antibody for tumor targeting. Clinical Cancer Research, 18, 1028–1038.

    PubMed  CAS  Google Scholar 

  80. Oberneder, R., Weckermann, D., Ebner, B., Quadt, C., Kirchinger, P., Raum, T., et al. (2006). A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. European Journal of Cancer, 42, 2530–2538.

    PubMed  CAS  Google Scholar 

  81. Suzuki, K., Nakamura, K., Kato, K., Hamada, H., & Tsukamoto, T. (2007). Exploration of target molecules for prostate cancer gene therapy. The Prostate, 67, 1163–1173.

    PubMed  CAS  Google Scholar 

  82. Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J., & Faulstich, H. (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. Journal of the National Cancer Institute, 104, 622–634.

    PubMed  CAS  Google Scholar 

  83. Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136, 1012–1024.

    PubMed  CAS  Google Scholar 

  84. Terris, B., Cavard, C., & Perret, C. (2010). EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. Journal of Hepatology, 52, 280–281.

    PubMed  CAS  Google Scholar 

  85. Kawashima, R., Abei, M., Fukuda, K., Nakamura, K., Murata, T., Wakayama, M., et al. (2011). EpCAM- and EGFR-targeted selective gene therapy for biliary cancers using Z33-fiber-modified adenovirus. International Journal of Cancer, 129, 1244–1253.

    CAS  Google Scholar 

  86. Marme, A., Strauss, G., Bastert, G., Grischke, E. M., & Moldenhauer, G. (2002). Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. International Journal of Cancer, 101, 183–189.

    CAS  Google Scholar 

  87. Salnikov, A. V., Groth, A., Apel, A., Kallifatidis, G., Beckermann, B. M., Khamidjanov, A., et al. (2009). Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. Journal of Cellular and Molecular Medicine, 13, 4023–4033.

    PubMed  Google Scholar 

  88. Ammons, W. S., Bauer, R. J., Horwitz, A. H., Chen, Z. J., Bautista, E., Ruan, H. H., et al. (2003). In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia, 5, 146–154.

    PubMed  CAS  Google Scholar 

  89. Goel, S., Bauer, R. J., Desai, K., Bulgaru, A., Iqbal, T., Strachan, B. K., et al. (2007). Pharmacokinetic and safety study of subcutaneously administered weekly ING-1, a human engineere monoclonal antibody targeting human EpCAM, in patients with advanced solid tumors. Annals of Oncology, 18, 1704–1707.

    PubMed  CAS  Google Scholar 

  90. Winkler, J., Martin-Killias, P., Pluckthun, A., & Zangemeister-Wittke, U. (2009). EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Molecular Cancer Therapeutics, 8, 2674–2683.

    PubMed  CAS  Google Scholar 

  91. Seimetz, D., Lindhofer, H., & Bokemeyer, C. (2010). Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treatment Reviews, 36, 458–467.

    PubMed  CAS  Google Scholar 

  92. Heiss, M. M., Strohlein, M. A., Jager, M., Kimmig, R., Burges, A., Schoberth, A., et al. (2005). Immunotherapy of malignant ascites with trifunctional antibodies. International Journal of Cancer, 117, 435–443.

    CAS  Google Scholar 

  93. Burges, A., Wimberger, P., Kumper, C., Gorbounova, V., Sommer, H., Schmalfeldt, B., et al. (2007). Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clinical Cancer Research, 13, 3899–3905.

    PubMed  CAS  Google Scholar 

  94. Jager, M., Schoberth, A., Ruf, P., Hess, J., Hennig, M., Schmalfeldt, B., et al. (2012). Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research, 72, 24–32.

    PubMed  Google Scholar 

  95. Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., & Duan, W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Science, 102, 991–998.

    PubMed  CAS  Google Scholar 

  96. Barbas, A. S., & White, R. R. (2009). The development and testing of aptamers for cancer. Current Opinion in Investigational Drugs, 10, 572–578.

    PubMed  CAS  Google Scholar 

  97. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    PubMed  CAS  Google Scholar 

  98. Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.

    PubMed  CAS  Google Scholar 

  99. O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.

    PubMed  Google Scholar 

  100. Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    PubMed  CAS  Google Scholar 

  101. Lugli, A., Iezzi, G., Hostettler, I., Muraro, M. G., Mele, V., Tornillo, L., et al. (2010). Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. British Journal of Cancer, 103, 382–390.

    PubMed  CAS  Google Scholar 

  102. Han, M. E., Jeon, T. Y., Hwang, S. H., Lee, Y. S., Kim, H. J., Shim, H. E., et al. (2011). Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cellular and Molecular Life Sciences, 68, 3589–3605.

    PubMed  CAS  Google Scholar 

  103. Meirelles, K., Benedict, L. A., Dombkowski, D., Pepin, D., Preffer, F. I., Teixeira, J., et al. (2012). Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 109, 2358–2363.

    PubMed  CAS  Google Scholar 

  104. Coumans, F. A., Doggen, C. J., Attard, G., de Bono, J. S., & Terstappen, L. W. (2010). All circulating EpCAM+CK+CD45 objects predict overall survival in castration-resistant prostate cancer. Annals of Oncology, 21, 1851–1857.

    PubMed  CAS  Google Scholar 

  105. Aktas, B., Muller, V., Tewes, M., Zeitz, J., Kasimir-Bauer, S., Loehberg, C. R., et al. (2011). Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecologic Oncology, 122, 356–360.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a NHMRC Career Development Fellowship (YL), Surgical & Urological Research Found (SURF) (PJC) from Urology Sydney and Cancer Research Trust Fund at Cancer Care Centre, St George Hospital (PHG and KHJ). The authors thank Professor Pamela Russell (Oncology Research Centre, Sydney) who kindly provided prostate cancer cell lines and Professor Warick Delprado (Douglass Hanly Moir Pathology, Sydney) who kindly provided prostate cancer specimens. The authors also thank Ms Jingli Hao and Ms Julia Beretov (Cancer Care Centre, St George Hospital) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul J. Cozzi or Yong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, J., Cozzi, P.J., Duan, W. et al. Role of the EpCAM (CD326) in prostate cancer metastasis and progression. Cancer Metastasis Rev 31, 779–791 (2012). https://doi.org/10.1007/s10555-012-9389-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9389-1

Keywords

Navigation