Skip to main content
Log in

Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness

A Potential New Role for Epinephrine in Stress

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood–brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham J, Mudd JO, Kapur N, Klein K, Champion HC, Wittstein IS (2009) Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. J Am Coll Cardiol 53:1320–1325

    Article  PubMed  CAS  Google Scholar 

  • Ameredes BT (2011) Beta-2-receptor regulation of immunomodulatory proteins in airway smooth muscle. Front Biosci (Schol Ed) 3:643–654

    Article  Google Scholar 

  • Cahill L, Alkire MT (2003) Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol Learn Mem 79:194–198

    Article  PubMed  CAS  Google Scholar 

  • Cannon WG, De La Paz D (1911) Emotional stimulation of adrenal secretion. Am J Physiol 28:64–70

    CAS  Google Scholar 

  • Carlezon WA Jr, Rohan ML, Mague SD, Meloni EG, Cayetano K, Tomasiewicz HC, Rouse ED, Cohen BM, Renshaw PF (2005) Antidepressant-like effects of cranial stimulation within a low energy magnetic field in rats. Biol Psychiatry 57:571–576

    Article  PubMed  Google Scholar 

  • Davis M, Astrachan DI (1978) Conditioned fear and startle magnitude: effects of different footshock or backshock intensities used in training. J Exp Psychol Anim Behav Process 4:95–103

    Article  PubMed  CAS  Google Scholar 

  • Debiec J, Bush DEA, LeDoux JE (2011) Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats—a possible mechanism for the persistence of traumatic memories in PTSD. Depress Anxiety 28:186–193

    Article  PubMed  Google Scholar 

  • Dikanović M, Demarin V, Kadojić D, Kadojić M, Trkanjec Z, Titlić M, Bitunjac M, Soldo-Butković S (2011) Effect of elevated catecholamine levels on cerebral hemodynamics in patients with chronic post-traumatic stress disorder. Coll Antropol 35:471–475

    PubMed  Google Scholar 

  • Dimsdale JE (2008) Psychological stress and cardiovascular disease. J Am Coll Cardiol 51:1237–1246

    Article  PubMed  Google Scholar 

  • Donovan E (2010) Propranolol use in the prevention and treatment of posttraumatic stress disorder in military veterans: forgetting therapy revisited. Prespect Biol Med 53:61–74

    Article  Google Scholar 

  • Ebert SN, Wong DL (1995) Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1. J Biol Chem 270:17299–17305

    Article  PubMed  CAS  Google Scholar 

  • Ebert SN, Balt SL, Hunter JPB, Gashler A, Sukhatme V, Wong DL (1994) Egr-1 activation of rat adrenal phenylethanolamine N-methyltransferase gene. J Biol Chem 269:20885–20898

    PubMed  CAS  Google Scholar 

  • Ebert SN, Ficklin MB, Her S, Siddall BJ, Bell RA, Morita K, Ganguly K, Wong DL (1998) Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-methyltransferase gene expression. J Neurochem 70:2286–2295

    Article  PubMed  CAS  Google Scholar 

  • Esler M (2010) The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 108:227–237

    Article  PubMed  CAS  Google Scholar 

  • Fineschi V, Michalodimitrakis M, D’Errico S, Neri M, Pomara C, Piezzo I, Turillazzi E (2010) Insight into stress-induced cardiomyopathy and sudden cardiac death due to stress. A forensic cardio-pathologist point of view. Forensic Sci Int 194:1–8

    Article  PubMed  Google Scholar 

  • Fragala MS, Kraemer WJ, Mastro AM, Denegar CR, Volek JS, Hakkinen K, Anderson JM, Lee EC, Maresh CM (2011) Leukocyte b2-adrenergic receptor expression in response to resistance exercise. Med Sci Sports Exerc 43:1422–1432

    Article  PubMed  CAS  Google Scholar 

  • Gaykema RP, Goehler LE (2011) Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behaviors: brain substrates for fatigue. Brain Behav Immun 25:443–460

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Gwinn GT (1951) Resistance to extinction of learned fear-drives. J Exp Psychol 42:6–12

    Google Scholar 

  • Heffner KL (2011) Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin North Am 31:95–108

    Article  PubMed  Google Scholar 

  • Her S, Bell RA, Bloom AK, Siddall BJ, Wong DL (1999) Phenylethanolamine N-methyltransferase gene expression: Sp1 and MAZ potential for tissue specific expression. J Biol Chem 274:8698–8707

    Article  PubMed  CAS  Google Scholar 

  • Her S, Claycomb R, Tai TC, Wong DL (2003) Regulation of the rat phenylethanolamine N-methyltransferase gene by transcription factors Sp1 and MAZ. Mol Pharmacol 64:1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Herault J, Perrot A, Barthelemy C, Buchler M, Cherpi C, Leboyer M, Sauvage D, Lelord G, Mallet J, Muh J (1993) Possible association of c-Harvey-Ras-1 (HRAS-1) marker with autism. Psychiatry Res 46:261–267

    Article  PubMed  CAS  Google Scholar 

  • Higgins JP, Tuttle T, Higgins JA (2010) Altitude and the heart: is going high safe for your cardiac patient. Am Heart J 159:25–32

    Article  PubMed  Google Scholar 

  • Hoffman BB (2001) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, vol 10. McGraw Hill, New York, pp 215–268

    Google Scholar 

  • Hokfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Article  CAS  Google Scholar 

  • Hokfelt T, Johansson O, Goldstein M (1984) Central catecholamine neurons as revealed by immunochemistry with special reference to the adrenaline neurons. In: Bjorklund A, Hokfelt T (eds) Handbook of neuroanatomy, vol 2. Elsevier, Amsterdam, pp 157–276

    Google Scholar 

  • Hopfl G, Ogunshola O, Gassmann M (2004) HIFs and tumors—causes and consequences. Am J Physiol Regul Integr Comp Physiol 286:R608–R623

    Article  PubMed  Google Scholar 

  • Inbar S, Neeman E, Avraham R, Benish M, Rosenne E, Ben-Eliyahu S (2011) Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity. PLoS One 6:1–11

    Article  Google Scholar 

  • Izquierdo A, Wellman CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26:5733–5738

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Snyder EM, Fridley BL, Salavaggione OE, Moon I et al (2008) Human phenylethanolamine N-methyltransferase genetic polymorphisms and exercise-induced epinephrine release. Physiol Genomics 33:323–332

    Article  PubMed  CAS  Google Scholar 

  • Khouri S, Imran N (2009) Stress cardiomyopathy (Takotsubo cardiomyopathy). Clin Med Cardiol 3:93–99

    PubMed  Google Scholar 

  • Kostrzewa RM (2007) The blood–brain barrier for catecholamines—revisited. Neurotoxic Res 11:261–272

    Article  CAS  Google Scholar 

  • Kvetnansky R, Nankova B, Rusnak M, Micutkova L, Kubovcakova L, Dronjak SK, Krizanova O, Sabban EL (2002) Differential gene expression of tyrosine hydroxylase in rats exposed long-term to various stressors. In: Nagatsu T, Nabeshima T, McCarty R, Goldstein DS (eds) Catecholamine research: from molecular insights to clinical medicine vol. Plenum, New York, pp 317–320

    Google Scholar 

  • Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89:535–606

    Article  PubMed  CAS  Google Scholar 

  • Laukova M, Vargovic P, Krizanova O, Kvetnansky R (2010) Repeated stress down-regulates β2- and α2C-adrenergic receptors and up-regulates gene expression of IL-6 in the rat spleen. Cell Mol Neurobiol 30:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Launay JM, Bursztein C, Ferrari P (1987) Catecholamine metabolism in infantile autism: a controlled study of 22 autistic children. J Autism Dev Disord 17:333–347

    Article  PubMed  CAS  Google Scholar 

  • Mausbach BT, Roepke SK, Ziegler MG, Milic M, von Kanel R, Dimsdale JE, Mills PJ, Patterson TL, Allison MA, Ancoli-Israel S, Grant I (2010) Association between chronic caregiving stress and impaired endothelial function in the elderly. J Am Coll Cardiol 55:2599–2606

    Article  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • McEwen BS, Gianaros PT (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann NY Acad Sci 1186:190–222

    Article  PubMed  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  PubMed  CAS  Google Scholar 

  • Meloni EG, Gerety LP, Knoll AT, Cohen BM, Carlezon WA Jr (2006) Behavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat. J Neurosci 26:3855–3863

    Article  PubMed  CAS  Google Scholar 

  • Mravec B (2011) Role of catecholamine-induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: negative feedback loop of stress response. Endocr Regul 45:37–41

    PubMed  CAS  Google Scholar 

  • Myers KM, Davis M (2004) AX+, BX- discrimination learning in the fear-potentiated startle paradigm: possible relevance to inhibitor fear learning in extinction. Learn Mem 11:464–475

    Article  PubMed  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    Article  PubMed  CAS  Google Scholar 

  • Peng Y-J, Nanduri J, Khan SA, Yuan G, Wang N, Kinsman B, Vaddi DR, Kumar GK, Garcia JA, Semenza GL, Prabhakar NR (2011) Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci USA 108:3065–3070

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    Article  PubMed  CAS  Google Scholar 

  • Ross ME, Evinger MJ, Hyman SE, Carroll JM, Mucke L, Comb M, Reis DJ, Joh TH, Goodman HM (1990) Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture. J Neurosci 10:520–530

    PubMed  CAS  Google Scholar 

  • Santra M, Santara S, Zhang J, Chopp M (2008) Ectopic decorin expression up-regulates VEGF expression in mouse cerebral endothelial cells via activation of the transcription factors Sp1, HIF1α, and Stat3. J Neurochem 105:324–337

    Article  PubMed  CAS  Google Scholar 

  • Schreurs J, Seelig T, Schulman H (1986) Beta 2-adrenergic receptors on peripheral nerves. J Neurochem 46:294–296

    Article  PubMed  CAS  Google Scholar 

  • Sood AK, Armaiz-Pena GN, Halder J, Nick AM, Stone RL, Hu W, Carroll AR, Spannuth WA, Deavers MT, Allen JK, Han LY, Kamat AA, Shahzad MMK, McIntyre BW, Diaz-Montero CM, Jennings NB, Lin YG, Merritt WM, DeGeest K, Vivas-Mejia PE, Lopez-Berestein G, Schaller MD, Cole SW, Lutgendorf SK (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 120:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Stone EA, Lin Y, Rosengarten H, Kramer HK, Quartermain D (2003) Emerging evidence for a central epinephrine-innervated α1-adrenergic system that regulates behavioral activation and is impaired in depression. Neuropsychopharmacology 28:1387–1399

    Article  PubMed  CAS  Google Scholar 

  • Tai TC, Wong DL (2003) Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methytransferase gene regulation. J Neurochem 85:816–829

    Article  PubMed  CAS  Google Scholar 

  • Tai TC, Claycomb R, Her S, Bloom AK, Wong DL (2002) Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene. Mol Pharmacol 61:1385–1392

    Article  PubMed  CAS  Google Scholar 

  • Tai TC, Claycomb R, Siddall BJ, Bell RA, Kvetnansky R, Wong DL (2007) Stress-induced changes in epinephrine expression in the adrenal medulla in vivo. J Neurochem 101:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Tai TC, Wong-Faull DC, Claycomb R, Wong DL (2009) Hypoxic stress-induced changes in adrenergic function: role of HIF1α. J Neurochem 109:513–524

    Article  PubMed  CAS  Google Scholar 

  • Tai TC, Wong-Faull DC, Claycomb R, Wong DL (2010) Hypoxia and adrenergic function: molecular mechanisms related to Egr-1 and Sp1 activation. Brain Res 1353:14–27

    Article  PubMed  CAS  Google Scholar 

  • Tillinger A, Bruderova V, Kubovcakova L, Zeman M, Kopacek J, Novakova M, Kvetnansky R, Krizanova O (2006) Gene expression of the phenylethanolamine N-methyltransferase is differently modulatedin cardiac atria and ventricles. Gen Physiol Biophys 25:355–364

    PubMed  CAS  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  PubMed  CAS  Google Scholar 

  • Viskupic E, Kvetnansky R, Sabban EL, Fukuhara K, Weise VK, Kopin IJ, Schwartz JP (1994) Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J Neurochem 63:808–814

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Davis M (2002) Quantifying fear potentiated startle using absolute versus proportional increase scoring methods: implications for the neurocircuitry of fear and anxiety. Psychopharmacology 164:318–328

    Article  PubMed  CAS  Google Scholar 

  • Wong DL, Tank AW (2007) Stress-induced catecholaminergic function: transcriptional and post-transcriptional control. Stress 10:121–130

    Article  PubMed  CAS  Google Scholar 

  • Wong DL, Lesage A, Siddall B, Funder JW (1992) Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo. FASEB J 6:3310–3315

    PubMed  CAS  Google Scholar 

  • Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S (1998) Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. Mol Brain Res 61:154–161

    Article  PubMed  CAS  Google Scholar 

  • Wong DL, Her S, Tai TC, Bell RA, Rusnak M, Farkas R, Kvetnansky R, Shih J (2002) Stress-induced expression of phenylethanolamine N-methyltransferase: normal and knock out animals. In: McCarty R, Aguilera G, Sabban EL, Kvetnansky R (eds) Stress: neural, endocrine and molecular studies. Taylor and Francis, London, pp 129–135

    Google Scholar 

  • Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Kvetnansky R (2004) Genetic mechanisms for adrenergic control during stress. In: Pacak K, Aguilera G, Sabban EL, Kvetnansky R (eds) Stress: current neuroendocrine and genetic approaches, vol 1018. Ann. N.Y. Acad. Sci, New York, pp 387–397

    Google Scholar 

  • Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Kvetnansky R (2008) Adrenergic responses to stress: transcriptional and post-transcriptional changes. Ann NY Acad Sci 1148:249–256

    Article  PubMed  CAS  Google Scholar 

  • Wong DL, Tai TC, Wong-Faull DC, Claycomb R, Siddall BJ, Bell RA, Kvetnansky R (2010) Stress and adrenergic function: HIF1α, a potential regulatory switch. Cell Mol Neurobiol 30:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Young EA, Breslau N (2004) Cortisol and catecholamines in posttraumatic stress disorder. Arch Gen Psychiatry 61:394–401

    Article  PubMed  CAS  Google Scholar 

  • Zeb M, Sambu N, Scott P, Curzen N (2011) Takotsubo cardiomyopathy: a diagnostic challenge. Postgrad Med J 87:51–59

    Article  PubMed  Google Scholar 

  • Zhang W, Shibamoto T, Kuda Y, Ohmukai C, Kurata Y (2011) Pulmonary vasoconstrictive and bronchoconstrictive responses to anaphylaxis are weakened via b2-adrenoceptor activation by endogenous epinephrine in anesthetized rats. Anesthesiology 114:614–623

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Spunk Fund, Inc., the Sobel-Keller Research Fund, McLean Hospital, and the Emerald Foundation, Inc. (DLW), NSERC and CIHR grants (TCT), MH063266 (WAC) and Slovak Grants, APVV-0088-10 and VEGA 2/0036-11 and 2/0188-09 (RK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dona Lee Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, D.L., Tai, T.C., Wong-Faull, D.C. et al. Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness. Cell Mol Neurobiol 32, 737–748 (2012). https://doi.org/10.1007/s10571-011-9768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9768-0

Keywords

Navigation