Skip to main content

Advertisement

Log in

Taurodeoxycholate Modulates Apical Cl/OH Exchange Activity in Caco2 Cells

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Bile acid malabsorption has been shown to be associated with diarrhea in cases such as ileal resection Crohn’s disease of the ileum, and radiation enteritis. The mechanisms of bile acid-induced diarrhea are not fully understood. Although the induction of colonic chloride secretion in response to bile acids has been extensively investigated, to date the direct effect of bile acids on intestinal chloride absorption has not been well defined. Therefore, the current studies were undertaken to investigate the effect of bile acids on the apical Cl/OH exchange process utilizing Caco2 monolayers as an in vitro cellular model. Cl/OH exchange activity was measured as DIDS-sensitive pH gradient-driven 36Cl uptake. The results are summarized as follows: (i) short-term exposure (20 min) of Caco2 cells to taurodeoxycholate (TDC; 200 μM) and glycochenodeoxycholate (GCDC; 200 μM) acids significantly inhibited apical Cl/OH exchange (by ∼60–70%); (ii) the Ca2+ chelator BAPTA-AM blocked the inhibition by TDC; (iii) the reduction in Cl/OH exchange by TDC was reversed by the PKC inhibitor, chelerythrine chloride; (iv) functional and inhibitor studies indicated that TDC induced inhibition of Cl/OH exchange was mediated via the activation of the PKCβI isoform; (v) the effect of TDC on apical Cl/OH exchange was completely blocked by the PI3 kinase inhibitor LY294002 (5 μM); and (vi) the PKA inhibitor, RpcAMP, had no effect on TDC induced inhibition of Cl/OH exchange. In conclusion, our studies provide direct evidence for inhibition of human intestinal apical Cl/OH exchange activity by bile acids via Ca2+-, PI3 kinase-, and PKCβI-dependent pathways in Caco2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shneider BL (2001) Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32(4):407–417

    Article  PubMed  CAS  Google Scholar 

  2. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159(22):2647–2658

    Article  PubMed  CAS  Google Scholar 

  3. Hofmann AF (1999) Bile acids: the good, the bad, and the ugly. News Physiol Sci 14:24–29

    PubMed  CAS  Google Scholar 

  4. Potter GD (1998) Bile acid diarrhea. Dig Dis 16(2):118–124

    Article  PubMed  CAS  Google Scholar 

  5. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342

    Article  PubMed  CAS  Google Scholar 

  6. Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99(8):1880–1887

    PubMed  CAS  Google Scholar 

  7. Sundaram U, Wisel S, Stengelin S, Kramer W, Rajendran V (1998) Mechanism of inhibition of Na+-bile acid cotransport during chronic ileal inflammation in rabbits. Am J Physiol 275(6, Pt 1):G1259–G1265

    PubMed  CAS  Google Scholar 

  8. Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun AQ, Shneider B (2002) Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 123(6):2005–2016

    Article  PubMed  CAS  Google Scholar 

  9. Lechner S, Muller-Ladner U, Schlottmann K, Jung B, McClelland M, Ruschoff J, Welsh J, Scholmerich J, Kullmann F (2002) Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cell lines. Carcinogenesis 23(8):1281–1288

    Article  PubMed  CAS  Google Scholar 

  10. Lowes S, Simmons NL (2001) Human intestinal cell monolayers are preferentially sensitive to disruption of barrier function from basolateral exposure to cholic acid: Correlation with membrane transport and transepithelial secretion. Pflugers Arch 443(2):265–273

    Article  PubMed  CAS  Google Scholar 

  11. Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK (2003) Mechanisms and regulation of NaCl absorption in in the human intestine. S. G. Pandalal (Ed.). Rec Res Dev Physiol 1(Part II):643–678

    CAS  Google Scholar 

  12. Volpe BT, Binder HJ (1975) Bile salt alteration of ion transport across jejunal mucosa. Biochim Biophys Acta 394(4):597–604

    Article  PubMed  CAS  Google Scholar 

  13. Oddsson E, Rask-Madsen J, Krag E (1977) Effect of glycochenodeoxycholic acid on unidirectional transepithelial fluxes of electrolytes in the perfused human ileum. Scand J Gastroenterol 12(2):199–204

    PubMed  CAS  Google Scholar 

  14. Freel RW, Hatch M, Earnest DL, Goldner AM (1983) Dihydroxy bile salt-induced alterations in NaCl transport across the rabbit colon. Am J Physiol 245(6):G808–G815

    PubMed  CAS  Google Scholar 

  15. Potter GD, Sellin JH, Burlingame SM (1991) Bile acid stimulation of cyclic AMP and ion transport in developing rabbit colon. J Pediatr Gastroenterol Nutr 13(4):335–341

    Article  PubMed  CAS  Google Scholar 

  16. Huang XP, Fan XT, Desjeux JF, Castagna M (1992) Bile acids, non-phorbol-ester-type tumor promoters, stimulate the phosphorylation of protein kinase C substrates in human platelets and colon cell line HT29. Int J Cancer 52(3):444–450

    Article  PubMed  CAS  Google Scholar 

  17. Devor DC, Sekar MC, Frizzell RA, Duffey ME (1993) Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84). J Clin Invest 92(5):2173–2181

    PubMed  CAS  Google Scholar 

  18. Dharmsathaphorn K, Huott PA, Vongkovit P, Beuerlein G, Pandol SJ, Ammon HV (1989) Cl- secretion induced by bile salts. A study of the mechanism of action based on a cultured colonic epithelial cell line. J Clin Invest 84(3):945–953

    Article  PubMed  CAS  Google Scholar 

  19. Venkatasubramanian J, Selvaraj N, Carlos M, Skaluba S, Rasenick MM, Rao MC (2001) Differences in Ca(2+) signaling underlie age-specific effects of secretagogues on colonic Cl(-) transport. Am J Physiol Cell Physiol 280(3):C646–C658

    PubMed  CAS  Google Scholar 

  20. Moschetta A, Portincasa P, Debellis L, Petruzzelli M, Montelli R, Calamita G, Gustavsson P, Palasciano G (2003) Basolateral Ca2+-dependent K+-channels play a key role in Cl- secretion induced by taurodeoxycholate from colon mucosa. Biol Cell 95(2):115– 122

    Article  PubMed  CAS  Google Scholar 

  21. Mahajan RJ, Baldwin ML, Harig JM, Ramaswamy K, Dudeja PK (1996) Chloride transport in human proximal colonic apical membrane vesicles. Biochim Biophys Acta 1280(1): 12–18

    Article  PubMed  Google Scholar 

  22. Alrefai WA, Ramaswamy K, Dudeja PK (2001) Mechanism(s) of chloride transport in human distal colonic apical membrane vesicles. Dig Dis Sci 46(10):2209–2218

    Article  PubMed  CAS  Google Scholar 

  23. Alrefai WA, Tyagi S, Mansour F, Saksena S, Syed I, Ramaswamy K, Dudeja PK (2001) Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am J Physiol Gastrointest Liver Physiol 280(4):G603–G613

    PubMed  CAS  Google Scholar 

  24. Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK (2002) Inhibition of apical Cl/OH exchange activity in Caco-2 cells by phorbol esters is mediated by PKCepsilon. Am J Physiol Cell Physiol 283(5):C1492–C1500

    PubMed  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  26. Song JC, Rangachari PK, Matthews JB (2002) Opposing effects of PKCalpha and PKCepsilon on basolateral membrane dynamics in intestinal epithelia. Am J Physiol Cell Physiol 283(5):C1548–C1556

    PubMed  CAS  Google Scholar 

  27. Potter GD, Lester R, Burlingame SM, Mitchell PA, Schmidt KL (1987) Taurodeoxycholate and the developing rabbit distal colon: absence of secretory effect. Am J Physiol 253(4, Pt 1):G483–G488

    PubMed  CAS  Google Scholar 

  28. Hug H, Sarre TF (1993) Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 291(Pt 2):329–343

    PubMed  CAS  Google Scholar 

  29. Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9(7):484–496

    PubMed  CAS  Google Scholar 

  30. De Camilli P, Emr SD, McPherson PS, Novick P (1996) Phosphoinositides as regulators in membrane traffic. Science 271(52–55):1533–1539

    Article  PubMed  CAS  Google Scholar 

  31. Bijvelds MJ, Jorna H, Verkade HJ, Bot AG, Hofmann F, Agellon LB, Sinaasappel M, de Jonge HR (2005) Activation of CFTR by ASBT-mediated bile salt absorption. Am J Physiol Gastrointest Liver Physiol 289 (5): G870–G879

    Google Scholar 

  32. Neimark E, Chen F, Li X, Shneider BL (2004) Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40(1):149–156

    Article  PubMed  CAS  Google Scholar 

  33. Jung D, Fried M, Kullak-Ublick GA (2002) Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha. J Biol Chem 277(34):30559–30566

    Article  PubMed  CAS  Google Scholar 

  34. Alrefai WA, Sarwar Z, Tyagi S, Saksena S, Dudeja PK, Gill RK (2005) Cholesterol modulates human intestinal sodium-dependent bile acid transporter. Am J Physiol Gastrointest Liver Physiol 288(5):G978–G985

    Article  PubMed  CAS  Google Scholar 

  35. Dulfer WJ, Govers HA (1995) Solubility and micelle-water partitioning of polychlorinated biphenyls in solutions of bile salt micelles. Chemosphere 30(2):293–306

    Article  PubMed  CAS  Google Scholar 

  36. Saksena S, Gill RK, Tyagi S, Syed I, Alrefai WA, Ramaswamy K, Dudeja PK (2003) Inhibition of Cl/OH exchange activity in Caco-2 Cells by hydrogen peroxide. Gastroenterology 124:A143

    Article  Google Scholar 

  37. Khare S, Bissonnette M, Scaglione-Sewell B, Wali RK, Sitrin MD, Brasitus TA (1999) 1,25-Dihydroxyvitamin D3 and TPA activate phospholipase D in Caco-2 cells: role of PKC-alpha. Am J Physiol 276(4, Pt 1):G993–G1004

    PubMed  CAS  Google Scholar 

  38. Saksena S, Gill RK, Tyagi S, Alrefai WA, Sarwar Z, Ramaswamy K, Dudeja PK (2005) Involvement of c-Src and protein kinase C delta in the inhibition of Cl-/OH- exchange activity in Caco-2 cells. J Biol Chem 280(12):11859–11868

    Article  PubMed  CAS  Google Scholar 

  39. Janecki AJ, Montrose MH, Zimniak P, Zweibaum A, Tse CM, Khurana S, Donowitz M (1998) Subcellular redistribution is involved in acute regulation of the brush border Na+/H+ exchanger isoform 3 in human colon adenocarcinoma cell line Caco-2. Protein kinase C-mediated inhibition of the exchanger. J Biol Chem 273(15):8790–8798

    Article  PubMed  CAS  Google Scholar 

  40. Charney AN, Egnor RW, Henner D, Rashid H, Cassai N, Sidhu GS (2004) Acid-base effects on intestinal Cl- absorption and vesicular trafficking. Am J Physiol Cell Physiol 286(5):C1062–C1070

    Article  PubMed  CAS  Google Scholar 

  41. Szaszi K, Kurashima K, Kaibuchi K, Grinstein S, Orlowski J (2001) Role of the cytoskeleton in mediating cAMP-dependent protein kinase inhibition of the epithelial Na+/H+ exchanger NHE3. J Biol Chem 276(44):40761–40768

    Article  PubMed  CAS  Google Scholar 

  42. Lamprecht G, Weinman EJ, Yun CH (1998) The role of NHERF and E3KARP in the cAMP-mediated inhibition of NHE3. J Biol Chem 273(45):29972–29978

    Article  PubMed  CAS  Google Scholar 

  43. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368

    Article  PubMed  CAS  Google Scholar 

  44. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365

    Article  PubMed  CAS  Google Scholar 

  45. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298(5):714–719

    Article  PubMed  CAS  Google Scholar 

  46. Glasova H, Berghaus TM, Kullak-Ublick GA, Paumgartner G, Beuers U (2002) Tauroursodeoxycholic acid mobilizes alpha-PKC after uptake in human HepG2 hepatoma cells. Eur J Clin Invest 32(6):437–442

    Article  PubMed  CAS  Google Scholar 

  47. Frizzell RA (1977) Active chloride secretion by rabbit colon: calcium-dependent stimulation by ionophore A23187. J Membr Biol 35(2):175–187

    PubMed  CAS  Google Scholar 

  48. Maenz DD, Forsyth GW (1982) Ricinoleate and deoxycholate are calcium ionophores in jejunal brush border vesicles. J Membr Biol 70(2):125–133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Department of Veterans Affairs and NIDDK grants: DK 54016 (P.K.D.), DK 68324 (P.K.D.), DK 33349 (K.R.), DK 67990 (K.R.), and DK 71596 (W.A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waddah A. Alrefai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alrefai, W.A., Saksena, S., Tyagi, S. et al. Taurodeoxycholate Modulates Apical Cl/OH Exchange Activity in Caco2 Cells. Dig Dis Sci 52, 1270–1278 (2007). https://doi.org/10.1007/s10620-006-9090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9090-8

Keywords

Navigation